Методы повышения надежности РЭА. Методы повышения надежности рэа

442kb. 20.12.2006 23:51 236kb. 28.12.2006 17:04 284kb. 20.12.2006 23:45 252kb. 20.12.2006 23:41 194kb. 20.12.2006 23:39 213kb. 20.12.2006 23:36 190kb. 15.05.2010 14:48 6kb. 15.05.2010 17:45 5kb. 15.05.2010 13:26 6kb. 15.05.2010 16:24 8kb. 15.05.2010 16:28 6kb. 15.05.2010 16:31 6kb. 15.05.2010 16:34 6kb. 15.05.2010 16:38 7kb. 15.05.2010 16:44 6kb. 15.05.2010 16:48 5kb. 15.05.2010 16:55 6kb. 15.05.2010 17:00 6kb. 15.05.2010 17:03 6kb. 15.05.2010 17:07 6kb. 15.05.2010 17:10 6kb. 15.05.2010 17:14 6kb. 15.05.2010 17:17 6kb. 15.05.2010 17:20 6kb. 15.05.2010 17:26 6kb. 23.05.2010 21:03 12kb. 15.05.2010 16:20 6kb. 15.05.2010 13:42 5kb. 15.05.2010 13:26 5kb. 14.05.2010 23:50 39kb. 15.05.2010 00:38 4kb. 14.05.2010 23:45

lec06.doc


КОНСТРУИРОВАНИЕ РАДИОЭЛЕКТРОННОЙ ГЕОФИЗИЧЕСКОЙ АППАРАТУРЫ

Development and creation of geophysical instruments. Protection of the equipment from mechanical influence

Тема 6: ЗАЩИТА АППАРАТУРЫ

ОТ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЙ И ПОМЕХ

Мы все умны, когда дело идет о том, чтобы давать советы, но, когда надо избегать промахов, мы не более как дети.

Менандр. Греческий поэт-комедиограф. IV в. до н.э.

Потому как совет строится на обобщениях, а промах всегда конкретен.

Валерий Самойлин. Уральский геофизик и радиоинженер. ХХ в.

Под прочностью конструкции понимается способность аппаратуры выполнять функции и сохранять параметры после приложения механиче-ских воздействий. Устойчивость конструкции - способность РЭА сохра-нять функции и параметры в процессе механических воздействий.

Откликом, или реакцией конструкции на механические воздействия называют трансформацию и преобразование энергии меха-нического возбуждения. К ним относятся механические напряжения в элементах конструкции, перемещения элементов конструкции и их соударения, деформации и разрушения конструктивных элементов, изменения свойств и параметров конструкции.

Механические воздействия могут приводить к взаимным перемещениям деталей и узлов, деформации крепежных, несущих и других элементов конструкций, их соударению. При незначительных механических воздейст-виях в элементах конструкций возникают упругие деформации, не сказывающиеся на работоспособности аппаратуры. Увеличение нагрузки приводит к появлению остаточной деформации и при определенных усло-виях разрушению конструкции. Разрушение может наступить и при нагрузках, много меньших предельных значений статической прочности мате-риалов, если конструкция окажется подверженной знакопеременным на-грузкам.

Отказы аппаратуры бывают восстанавливаемыми после снятия или ослабления механического воздействия (изменение параметров компонентов, возникновение электрических шумов) и невосстанавливаемыми (обрывы и замыкания электрических соединений, отслаивание проводников печатных плат, нару-шение элементов крепления и разрушение несущих конструкций).

На транспортируемую РЭА в процессе ее эксплуатации воздействует вибрации, ударные нагрузки и линейные ускорения. ^ Гармонические вибрации характеризуются частотой, амплитудой, ускорением. Ударные нагрузки характеризуются числом одиночных ударов или их серией (обычно оговаривают максимальное число ударов), длительностью ударного импульса и его формой, мгновенной скоростью при ударе, перемещением соударяющихся тел. Линейные ускорения характеризуются ускорением, длительностью, знаком воздействия ускорения.

Возникающие при вибрациях, ударах и ускорениях перегрузки оценивают соответствующими коэффициентами. Для уменьшения воздействия вибраций и ударов аппаратуру устанавливают на амортизаторы или применяют демпфирующие материалы.

Воздействие линейных ускорений эквивалентно увеличению массы аппаратуры и при значительной длительности воздействия требует увеличения прочности конструкции. Амортизаторы от линейных перегрузок практически не защищают.

Как показывает опыт эксплуатации транспортируемой РЭА, наибольшее разрушающее воздействие на конструкцию оказывают вибрации. Как правило, конструкция аппарата, выдержавшая воздействие вибрационных нагрузок в определенном частотном диапазоне, выдерживает ударные нагрузки и линейные ускорения с большими значениями соответствующих параметров.

Понятие виброустойчивости и вибропрочности. В отношении конструкции РЭА различают два понятия: вибрационная устойчивость и вибрационная прочность.

^ Вибрационная устойчивость - свойство объекта при заданной вибрации выполнять заданные функции и сохранять значения своих параметров в пределах нормы. Вибрационная прочность - прочность при заданной вибрации и после прекращения ее.

Воздействие транспортной тряски складывается из ударов и вибраций. Введение амортизаторов между РЭА и объектом в качестве среды, уменьшающей амплитуду передаваемых колебаний и ударов, снижает действующие на РЭА механические силы, но не уничтожают их полностью. В некоторых случаях образованная с введением амортизаторов резонансная система влечет за собой возникновение низкочастотного механического резонанса, который приводит к увеличению амплитуды колебаний РЭА.

Понятие жесткости и механической прочности конструкции. При разработке конструкции РЭА необходимо обеспечить требуемую жесткость и механическую прочность ее элементов.

^ Жесткость конструкции есть отношение действующей силы к деформации конструкции, вызванной этой силой. Под прочностью конструкции понимают нагрузку, которую может выдержать конструкция без остаточной деформации или разрушения. Повышение прочности конструкции РЭА связано с усилением ее конструктивной основы, применением ребер жесткости, контровки болтовых соединений и т. д. Особое значение имеет повышение прочности несущих конструкций и входящих в них узлов методами заливки и обволакивания. Заливка пеноматериалом позволяет сделать узел монолитным при незначительном увеличении массы.

Конструкция как колебательная система. Во всех случаях нельзя допускать образования механической колебательной системы. Это касается крепления монтажных проводов, микросхем, экранов и других частей, входящих в РЭА.


Основными параметрами любой конструкции с позиций реакции на механические воздействия являются масса, жесткость и механическое со-противление (демпфирование). При анализе влияния вибраций на конструк-ции модулей последние представляют в виде системы с сосредоточенными параметрами, в которой заданы масса изделия m, элемент жесткости в виде пружины и элемент механического сопротивления в виде демпфера, характеризующиеся параметрами k и r соответственно.

При необходимости построения более сложных моделей, например пластины с установленными на ней модулями, можно воспользоваться мо-делью, приведенной на рис. 6.1.1, и при достаточно большом числе ячеек полу-чить модель системы с распределенными параметрами.



Рис. 6.1.1.
Важнейшим показателем механической системы является чис-ло степеней свободы, определяющих положение системы в про-странстве в любой момент времени. Рассматриваемое число степеней свободы кон-струкции зависит от степени ее упрощения, т. е. модель должна в определенной степени отображать реальную конструкцию и быть достаточно простой для исследования.

В системе с одной степенью свободы внешней силе F(t) в каждый мо-мент времени будут противодействовать силы инерции массы F m , жесткости F k и демпфирования Fr:

F(t) = F m + F r + F k . (6.1.1)

F m = m d 2 /dt 2 , F r = r d/dt, F k = k .

Где  смещение системы от положения равновесия под воздействием си-лы F(t).

Линейное дифференциальное уравнение, описывающее состояние системы в любой момент времени:

M d 2 /dt 2 + r d/dt + k F(t). (6.1.2)

Уравнение собственных колебаний системы можно получить, прирав-няв F(t) нулю, при этом получим (без учета начальной фазы):

  exp(-t) sin  o t

Где  o - начальные амплитуда колебаний;  = г/(2m) - ко-эффициент демпфирования;  o =
= 2f o - собственная частота колебаний системы с демпфированием.

В реальных механических системах в каждом цикле колебаний проис-ходят потери энергии затухание колебаний.

Решение дифференциального уравнения вынужденных колебаний системы (при F(t) = F m sin t)име-ет вид:

  exp(-r o t) sin  o t + A в sin t.

Первое слагаемое описывает собственные колебания сис-темы с частотой, второе - вынужденные колебания, где   и A в - амплитуда соответственно собственных и вынужденных колебаний. Когда частота собственных колебаний системы близка к частоте вы-нужденных, в колебательной системе возникает явление механического ре-зонанса, что может привести к повреждению конструкции.

Амортизация конструкции РЭА . Один из эффективных методов повышения устойчивости конструкции, как транспортируемой, так и стационарной, к воздействию вибраций, а также ударных и линейных нагрузок - использование амортизаторов. Действие амортизаторов основано на демпфировании резонансных частот, т. е. поглощении части колебательной энергии. Аппаратура, установленная на амортизаторах, в общем случае может быть представлена в виде механической колебательной системы с шестью степенями свободы: совокупностью связанных колебаний, состоящих из линейных перемещений, и вращательных колебаний по каждой из трех координатных осей.

Эффективность амортизации характеризуется коэффициентом динамичности или передачи, числовое значение которого зависит от отношения частоты действующих вибраций f к частоте амортизированной системы f o .

При разработке схемы амортизации необходимо стремиться к тому, чтобы система имела минимальное число собственных частот и чтобы они были в 2-3 раза ниже наименьшей частоты возмущающей силы.

Для амортизированной аппаратуры следует как можно больше уменьшать собственную частоту, а для неамортизированной, напротив, увеличивать, приближая ее к верхней границе возмущающих воздействий или превышая ее.

Схемы размещения амортизаторов. Конструирование системы амортизации РЭА обычно начинается с выбора типа амортизаторов и схемы их размещения. Выбор амортизаторов производят исходя из допустимой нагрузки и предельных значений параметров, характеризующих условия эксплуатации. К таким параметрам относятся: температура окружающей среды, влажность, механические нагрузки, присутствие в атмосфере паров масла, дизельного топлива и т. д.



Рис. 6.1.2.
Выбор схемы расположения амортизаторов зависит главным образом от расположения аппаратуры на носителе и условий динамического воздействия. На рис. 6.1.2 представлены основные схемы расположения амортизаторов. Вариант "а " довольно часто используется для амортизации сравнительно небольших по габаритам блоков. Такое расположение амортизаторов удобно с позиций общей компоновки блоков на объекте. Однако при этом расположении амортизаторов принципиально невозможно получить совпадение центра тяжести (ЦТ) с центром масс (ЦМ) и не получить рациональной системы. То же можно сказать про вариант размещения "б ". Вариант размещения "в " позволяет получить рациональную систему, однако такое расположение амортизаторов не всегда удобно при размещении на объекте. Размещение типа "г " и "д " является разновидностью варианта "в " и используется в том случае, если лицевая панель блока размещается вблизи амортизатора, расположенного снизу. Размещение амортизаторов типа "е " используется в стоечной аппаратуре, когда высота РЭА значительно больше глубины и ширины стойки. Чтобы ослабить колебания стойки вокруг осей х и у, ставят дополнительно два амортизатора сверху стойки.

Прочность конструктивных элементов. Механическую прочность элементов конструкции проверяют метода-ми сопротивления материалов и теории упругости для простейших конструкций с распреде-ленной и смешанной нагрузкой. В большинстве практических случаев кон-струкции деталей РЭА имеют более сложную конфигурацию, затрудняющую определение в них напряжений. При расчетах сложную деталь заменяют ее упрощенной моделью: балкой, пластиной, рамой.

К балкам относят тела призматической формы, длины которых значи-тельно превышают все прочие геометрические размеры конструкции. Кон-цы балок защемляются (сваркой, пайкой), опираются шарнирно-подвижно (установкой в направляющие) или шарнирно-неподвижно (одиночное винтовое соедине-ние). Пластинами считают тела прямоугольной формы, толщина которых мала по сравнению с размерами основания. К подобным конструкциям от-носят печатные платы, стенки кожухов приборов, стоек, панелей и прочих подобных конструкций. Жесткое закрепление края пластин осуществляется пайкой, сваркой, зажимом, винтовым соединением; шарнирное закрепление - установкой пластин в направляющие, гнездовой соединитель. Рамными конструкциями моделируются многовыводные компо-ненты: микросхемы, реле и пр.

При проектировании конструкции выполняют:

Проверочные расчеты, когда форма и размеры детали известны (вы-явлены при конструировании);

Проектные расчеты, когда размеры опасных сечений неизвестны и их определяют на основе выбранных допустимых напряжений;

Расчеты допускаемых нагрузок по известным опасным сечениям и допустимым напряжениям.

При проведении проверочных расчетов на упругие колебания с уче-том направления воздействия вибраций выделяют детали и узлы, имеющие наибольшие деформации, выбирают расчетные модели, рассчитывают соб-ственные частоты, определяют нагрузки и сравнивают полученные значения с пределами прочности выбранных материалов, при необходимости прини-мают решение о повышении прочности конструкции.

Для увеличения вибропрочности в конструкции отдельных элементов вводятся дополнительные крепления, ребра и рельефы жесткости, отбортовки, выдавки, используются материалы с высокими демпфирующими свойст-вами, демпфирующие покрытия.

Внешние вибрационные воздействия часто задаются довольно узким диапазоном частот. В правильно сконструированной аппаратуре собствен-ная частота f o конструкции не должна находиться в спектре частот внешних воздействий. Хотя любая конструкция обладает несколькими значениями собственных частот, однако расчет выполняется только для низших значений f o , поскольку деформации конструкций в этом случае будут максимальными. Если низшее значение собственной частоты входит в диапазон внешних воздействий, то конструкцию дорабатывают с целью увеличения f o и выхода из спектра частот внешних воздействий.

Под жесткостью конструкции понимается способность системы (элемента, детали) противостоять действию внешних нагрузок с деформа-циями, не допускающими нарушение ее работоспособности. Количественно жесткость оценивается коэффициентом жесткости  = Р/, где Р - дей-ствующая сила;  максимальная деформация. Конструкцию можно представить в виде совокупности элементов (деталей), каждый из которых работает как балка определенной длины и сечения, закрепленная на одном или обоих концах. Известно, что жесткость защемленной на одном конце балки, находящейся под воздействием сосре-доточенной нагрузки, вычисляется по выражению EF/l при работе балки на растяжение или сжатие и по выражению 3EJ/1 3 при работе балки на изгиб (Е - модуль упругости материала балки; F - площадь сечения; J - осевой мо-мент инерции; l - длина балки). Чем больше модуль упругости материала, тем выше жесткость бал-ки. Жесткость конструкции зависит от длины, формы и размеров по-перечного сечения балки.

В таблице приведены параметры материалов, применяющихся для конструкций РЭА. Удельная прочность и жесткость материалов рассчитыва-ется по следующим выражениям:

Для металлов:  p уд = [] p / ,  и уд = [] и 2/3 /  , Е уд = E/

Для неметаллов:  p уд = [] p / ,  и уд = [] и 2/3 /  ,

Где р - плотность вещества.

Параметры конструкционных материалов


Материал

Марка

 р, МПа

Е, ГПа

 г/см2

Удельная прочность и жесткость

 р уд 

 и уд

Е уд

Сталь углеродистая

Ст10

334

203

7,85

42,5

12

26

Ст45

600

200

7,85

76,5

18

25,5

Сталь легированная

39ХГСА

490

198

7,85

62

,7

25,3

Алюминиевые спла-вы

АД-1

58

69

2,7

21

7,7

26

В-95

275

69

2,8

96

21

24

Магниевые сплавы

МА2-1

255

40

1,8

142

27

23

МА2-8

275

40

1,8

154

29

22

Медные сплавы

Л-63

294

103

8

35

11

12

Бр-Б2

392

115

8

48

13

14

Титановые сплавы

ВТ1-0

687

113

4,5

152

28

25

ВТЗ-1

1176

113

4,5

218

41

25

Фенопласт

К-21-22

64

8,6

1,4

38

46

6,2

Пресс-материал

АГ-4С

245

34

1,8

273

136

19

Гетинакс

II

98

21

1,4

49

70

15

Текстолит

ПТК

157

10

1,4

70

112

7

Стеклотекстолит

ВФТ-С

245

-

1,85

180

132

-

Фторопласт



14

0,44

2,2

10

6,2

0,2

Стеклопластик

СВАМ-ЭР

687

21

2

221

343

10,3

Пенопласт

ПС-1

-

0,15

0,35

14

-

0,45

Вибрации, направленные ортогонально к плоскости печатной платы, попеременно изги-бают ее и влияют на механическую прочность установленных на ней микросхем и ком-понентов. Если компоненты считать жестки-ми, то изгибаться будут их выводы. Большинство отказов компонентов происходит из-за поломки паяных соединений выводов с платой. Наиболее жест-кие воздействия имеют место в центре платы, а для прямоугольных плат еще и при ориентации тела элемента вдоль короткой стороны платы. Приклеивание компонентов к плате значительно улучшает надеж-ность паяных соединений. Защитное лаковое покрытие толщиной 0,1.. .0,25 мм жестко фиксирует компоненты и увеличивает надежность РЭА.

Механические напряжения на паяные соединения от воздействия виб-раций можно уменьшить: увеличением резонансных частот, что позволяет уменьшить прогиб платы; увеличением диаметра контактных площадок, что повышает проч-ность сцепления контактной площадки с платой; подгибом и укладыванием выводов элементов на контактную площадку,
что увеличивает длину и прочность сцепления паяного соединения; уменьшением добротности платы на резонансе ее демпфированием многослойным покрытием лака.

Экспериментальные данные собственных частот печатных плат


Размеры ПП, мм

35

70

140

Толщина ПП, мм

Собственная частота, Гц

25

2780

2070

2260

1,0

5100

3800

3640

1,5

50

1400

690

520

1,0

2600

1270

955

1,5

75

1120

450

265

1,0

2030

830

490

1,5

В таблице выше приведены экспериментальные данные по собственным частотам ПП в зависимости от их линейных размеров. Материал плат - стеклотекстолит, монтаж элементов - двусторонний, фиксация платы - по всему периметру. Чтобы собственные частоты превысили границы верхнего диапазона частот внешних воздействий, необходимо увеличивать толщину или уменьшать ширину (длину) платы.

Фиксация крепежных элементов. При воздействии вибраций возможно отвинчивание крепежных эле-ментов, для предотвращения которого вводят фиксаторы, увеличивают силы трения, устанавливают крепеж на краску и пр. При выборе методов фикса-ции крепежных элементов должны учитываться следующие соображения: обеспечение прочности соединения при заданных нагрузках и кли-матических воздействий; быстрота выполнения соединения, его стоимость; последствия, к которым приведет отказ соединения; срок службы.

Следует принимать во внимание возможность замены износившихся или поврежденных деталей, использо-вать вместо винтовых пар быстро сочленяемые элементы: петли, защелки, собачки и пр. Болты должны быть ориентированы головкой вверх, чтобы при отвинчивании гайки болты оказывались на установочном месте. Реко-мендуется применять несколько больших крепежных деталей вместо боль-шого числа маленьких. Число оборотов, необходимых для затягивания или отпускания винта, должно быть не менее 10.

Срок службы конструкции. При колебаниях в конструкциях возникают переменные напряжения и конструкции могут разрушаться при нагрузках, значительно меньших пре-дельной статической прочности материалов из-за появления микротрещин, на рост которых влияют особенности кристаллической структуры материа-лов, концентрации напряжений в углах микротрещин, условий окружающей среды. По мере развития микротрещин поперечное сечение детали ослабля-ется и в некоторый момент достигает критической величины - конструкция разрушается.

Если масса изделия не является критическим фактором, то конструкцию упрочняют, используя материалы с запасом, избегают введения отверстий, над-сечек, сварных швов, ведут расчеты конструкций методом наихудшего случая.

Конструктивную целостность аппаратуры и защиту от ме-ханических воздействий обеспечивает конструкционный материал, который должен удовлетворять заданными меха-ническими и физическими свойствами, обладать легкостью в обработке, коррозионной стойкостью, низкой стоимостью, иметь максимальное отно-шение прочности к массе и пр. В зависимости от сложности несущую конструкцию выполняют в виде единой детали либо составной, включающей несколько деталей, объединен-ных в единую конструкцию разъемными или неразъемными соединениями. В современной аппаратуре с применением микросхем масса несущих конструкций дости-гает 70 % от общей массы РЭА. Основной путь к снижению массы изделий - облегчение несущих конструкций при одновременном обеспечении ими требований прочности и жесткости.

Срок службы конструкции при вибровоздействиях определяется чис-лом циклов до разрушения, которое может выдержать конструкция при за-данном уровне механической нагрузки. Усталостные характеристики материалов выявляются на группе образцов при знакопере-менной повторяющейся нагрузке.

^ 6.2. Защита АППАРАТУРЫ от воздействия помех

Надежность и достоверность работы РЭА и систем зависят от их помехозащищенности по отношению к внешним и внутренним, случайным и регулярным помехам. От правильного решения задачи обеспечения помехоустойчивости элементов и узлов РЭА зависят как сроки разработки изготовления и наладки РЭА, так и нормальное ее функционирование в процессе эксплуатации.

Природа помех. Помехой для аппаратуры является внешнее или внутреннее воздействие, приводящее к искажению аналоговой или дискретной информации в изделии во время ее хранения, преобразования, обработки или передачи. Помеха - непредусмотренный при проектировании РЭА сигнал, спо-собный нарушить ее функционирование. Так как сигналы в РЭА имеют электрическую природу, то при конструировании необходимо учитывать помехи той же природы, как наиболее вероятные источники искажения информации. Помехами могут быть напряжения, токи, электрические заряды, напря-женность поля и др. Источники помех многообразны по физической природе и подразделяются на внутренние и внешние.

Внутренние помехи возникают внутри работающей аппаратуры. Источ-никами электрических помех являются, в основном, блоки питания и токоразводящие цепи. Источни-ками магнитных помех являются трансформаторы и дроссели. При наличии пульсаций выходного напряжения вторичных источников электропитания цепи распределения электроэнергии, тактирующие и синхронизирующие це-пи следует рассматривать как источники электромагнитных помех. Значи-тельные помехи создают электромагниты, электрические двигатели, реле и электромеханические устройства. Внутренними помехами являются также помехи от рассогласова-ния волновых сопротивлений линий связи с входными и выходными сопро-тивлениями модулей, которые эти линии соединяют, а также помехи, возни-кающие по земляным шинам.

Под внешними помехами понимаются помехи сети электропитания, сварочных аппаратов, щеточных двигателей, передающей радиоэлектронной аппаратурой и пр., а также помехи, вызванные разрядами статического элек-тричества и атмосферными явлениями. Действие на аппаратуру внешних помех по физической природе аналогично действию внутренних помех.

Приемниками помех являются высокочувствительные усилители, ли-нии связи, магнитные элементы. Помехи проникают в ап-паратуру непосредственно по проводам или проводникам (гальваническая помеха), через электрическое (емкостная помеха), магнитное (индуктивная помеха) или электромагнитное поле. Многочисленные проводники, входя-щие в состав любой аппаратуры, можно рассматривать как приемо-передающие антенные устройства, принимающие или излучающие электро-магнитные поля.

Гальваническая связь возникает в результате протекания токов и па-дения напряжений на электрических соединениях, общих по цепям питания. Поэтому проводники, объединяющие модули в единую систему, должны быть по возможности короткими, а их поперечные сечения возможно большими, что приводит к уменьшению активного сопротивления и индуктивности проводов. Радикальным способом устранения гальванической помехи является устранение цепей, по которым проходят совместные токи питания и земли как чувствительных к помехам схем, так и сравнительно мощных схем.

Борьба с помехами приобретает все большую актуальность по следующим причинам.

1. Энергетический уровень информационных сигналов имеет тенденцию к уменьшению, а энергетический уровень внешних помех непрерывно увеличивается.

2. Увеличение взаимного влияния элементов из-за уменьшения габаритных размеров активных элементов и линий связи между ними, а также увеличение плотности их размещения.

3. Возрастание уровня помех из-за усложнения систем и расширения применения внешних устройств с большим количеством электромеханических узлов.

4. Внедрение РЭА во все сферы человеческой деятельности.



Рис. 6.2.1. Классификация помех в РЭА
Классификация помех. Помехи могут быть классифицированы по причине наведения , характеру проявления и пути распространения (рис. 6.2.1).

Основные причины, вызывающие искажения сигналов при прохождении их по цепям РЭА, следующие:

А) отражения от несогласованных нагрузок и от различных неоднородностей в линиях связи;

Б) ухудшение фронтов и задержки, возникающие при включении нагрузок с реактивными составляющими;

В) задержки в линии, вызванные конечной скоростью распространения сигнала;

Г) перекрестные помехи;

Е) наводки от внешних электромагнитных полей.

Степень влияния каждого из перечисленных факторов на искажение сигналов зависит от характеристик линий связи, логических элементов и сигналов, а также от конструктивного выполнения всей системы элементов и связей.

Способы снижения помех. Электрическое объединение логических и других элементов РЭА осуществляют связями двух видов: сигнальными и цепями питания . По сигнальным связям информация передается в виде импульсов напряжения и тока. Шины питания служат для подведения энергии к элементам от низковольтных источников постоянного напряжения.

Помехи в сигнальных проводниках. Связи между элементами РЭА выполняются различными способами: для сравнительно медленных устройств - в виде печатных или навесных проводников; в устройствах с повышенными скоростями работы - в виде печатных полосковых линий, «витых пар» (бифиляров).

При группировке элементов по узлам и блокам между ними образуется большое число электрически «коротких » и электрически «длинных » связей.

Электрически «короткой» называют линию связи, время распространения сигнала в которой много меньше переднего фронта передаваемого по линии импульса. Сигнал, отраженный от несогласованных нагрузок в этой линии связи, достигает источника раньше, чем успеет измениться входной импульс. Свойства такой линии можно описать сосредоточенными сопротивлениями, емкостью и индуктивностью.

Электрически «длинная» линия связи характеризуется временем распространения сигнала, много большим фронта импульса. В этой линии отраженный от конца линии сигнал приходит к ее началу после окончания фронта импульса и искажает его форму. Такие линии следует рассматривать как линии с распределенными параметрами.

В ИС, ячейках и модулях связи, как правило, электрически «короткие» линии. В более крупных конструктивных единицах РЭА в основном электрически «длинные» линии. Доля «длинных» связей с ростом сложности аппаратуры возрастает.

Помехи в «коротких» связях. При анализе процессов передачи сигналов электрически «короткую» линию связи можно представить в виде эквивалентной схемы (рис. 6.2.2), содержащей сосредоточенные индуктивность L и емкость C (омическим сопротивлением пренебрегают), которые "затягивают" фронты сигналов и тем самым создают задержки срабатывания последующих схем.



Рис. 6.2.2.
В зависимости от геометрических размеров сечений линий, их длины, диэлектрических свойств изоляционных материалов, тот или иной параметр линии может преобладать и оказывать большее воздействие на процессы передачи сигнала, чем все остальные. Для уменьшения задержки в линиях с индуктивным характером связи следует увеличивать входное сопротивление элемента Э 2 , при емкостном характере – уменьшать выходное сопротивление элемента Э 1 .

Помехи при соединении элементов «длинными» связями. Электрически «длинную» линию связи рассматривают как однородную линию с распределенной емкостью С о и индуктивностью L o . Переходные процессы в таких линиях зависят от характера перепада напряжения u вх на входе линии и соотношения волнового сопротивления линии z 0 , выходного сопротивления z r генератора импульсов и входного сопротивления z н нагруженного на конец линии элемента (рис. 6.2.3).



Рис. 6.2.3.
Если линия с волновым сопротивлением z 0 нагружена на сопротивление z н, и z 0 = z н, то такую линию называют согласованной, если z 0 z н, линию называют несогласованной . При этом волна напряжения, достигнув конца линии, отражается от него. Отраженная волна, достигнув начала линии, затухает при z г =z 0 . Если z г z 0 , волна вновь отражается от начала линии.

Процесс поочередного отражения волны напряжения от обоих концов линии связи идет с затуханием и продолжается до тех пор, пока амплитуда отраженной волны не уменьшится до нуля. Отраженные волны напряжения накладываются на падающие, и в итоге форма входного напряжения может существенно исказиться. Аналогичные явления происходят и с волной тока. Отражения волн напряжения и тока могут быть не только от несогласованных нагрузок на концах линий, но и от различных неоднородностей в ней самой.


Известно, что только при полном согласовании обеих линий импульс наводимого напряжения имеет минималь-ные амплитуду и длитель-ность. Рассогласование ли-нии-приемника на одном из ее концов приводит к увеличению амплитуды и длительности наводимой помехи.

Методы разводки «длинных» линий связи. В быстродействующих системах, в которых задержка определяется только задержками в цепях связей, основную проблему может составить способ разводки линий между отдельными ИС. В настоящее время существует три способа разводки: радиальный, с промежуточными отводами, комбинированный.

При радиальном способе разводки каждую ИС-нагрузку подключают к ИС-источнику сигнала индивидуальной связью, при этом ИС-источник сигнала должна иметь выходное сопротивление, равное z 0 /n, где n – число нагруженных на нее ИС. При большом n потребуется ИС-источник сигнала с недостижимо малым выходным сопротивлением. Другой недостаток радиального способа - необходимость наличия отдельной линии связи для каждой нагрузки. Поэтому радиальный метод рекомендуют только для небольшого количества нагрузок.

При способе разводки с промежуточными отводами ИС-нагрузки подключают к связи-магистрали и далее к ИС-источнику сигнала через короткие проводники, при этом нагрузочные ИС должны иметь высокие входные сопротивления, иначе они будут перегружать линии связи.

^ Комбинированный способ обеспечивает согласование в любой точке линии связи путем разводки сигналов на нагрузки, размещенные по разным направлениям. При этом число проводников меньше, чем при радиальном способе, а выходное сопротивление источника сигналов допускается сравнительно высоким. Если на линии связи находятся всего две нагрузки, то ИС-источник сигнала можно пометить в любой точке вдоль нее.

Наводки по цепям питания и методы их уменьшения. При использовании одного источника напряжения питание к элементам подводится с помощью двух проводников: прямого и обратного. Часто на элементы необходимо подавать напряжение от нескольких источников с разными номиналами. В этом случае для уменьшения количества шин питания обратные проводники объединяют в одну шину, которую соединяют с корпусом изделия и называют шиной «земля ». В статическом состоянии по цепям питания протекают стационарные токи.

Для уменьшения наводок, связанных с падением напряжения на шинах питания и «земля» и переходными процессами в них, используют различные методы.

Применение индивидуальных сглаживающих конденсаторов (ИСК). ИСК устанавливают между шинами питания и «земля» непосредственно возле точек присоединения электронных устройств к этим шинам. ИСК является как бы индивидуальным источником питания схемы, максимально приближенным к ней физически. В микроэлектронной аппаратуре используются два вида ИСК, устанавливаемые непосредственно у каждой микросхемы и устанавливаемые на группу микросхем в пределах одной ячейки, модуля.

Первый тип ИСК предназначен для сглаживания импульсных помех в момент переключения микросхемы за счет локализации цепи протекания бросков тока в цепи микросхема - ИСК. В качестве таких ИСК используют обычно обладающие малой собственной индуктивностью керамические конденсаторы. Емкость ИСК выбирают, исходя из условия равенства заряда, накапливаемого конденсатором за время переключения микросхемы, заряду, переносимому выбросом тока за время переключения элемента.

Второй тип ИСК, устанавливаемый на группу микросхем, предназначен для компенсации бросков тока в системе электропитания. Это обычно электролитические конденсаторы большой емкости, обеспечивающие исключение резонансных явлений в цепях питания.


Рис. 6.2.4.
Помехоподавляющие фильтры. Эффективным схемным средством ослабления внешних помех по сетям питания является использование помехоподавляющих фильтров.

Фильтры характеризуются частотой среза и коэффициентом фильтрации, равным отношению сигнала на входе и выходе фильтра. Зная спектр частот полезного сигнала и помехи, и задаваясь определенным ослаблением помехи (в идеале - до нуля), проектируют соответствующие схемы фильтров.

Сетевые фильтры предназначены передавать на выход (в прибор) только частоту сетевого напряжения и подавлять помехи от источника электропитания. Для защиты аппаратуры от перенапряжений в схему сетевого фильтра обычно вводят газораз-рядники, варисторы, стабилитроны, предохранители.

Использование металлического листа в качестве «земли». Этот метод применим для элементов второго уровня конструктивной иерархии РЭА (субблоков, блоков, панелей) и заключается в установке в эти конструктивные элементы сравнительно толстого металлического листа, к которому припаивают обратные провода от всех закрепленных ячеек или модулей.

Использование сплошных металлических прокладок в качестве шин питания. Этот метод применим в случае использования многослойных печатных плат для устройств сверхбыстродействующих РЭА. В таких платах отдельные слои изготовляют с максимально большой площадью металла и применяют их в качестве шин питания, эти слои размещают внутри многослойной платы. При использовании сплошных металлических слоев значительно уменьшаются собственное индуктивное сопротивление шин питания, общие участки протекания токов различных элементов и увеличивается взаимная емкость между шинами питания.


Применение экранов в РЭА. При прохождении мощных сигналов по цепям связи последние становятся источниками электромагнитных полей, которые, пересекая другие цепи связи, могут наводить в них дополнительные помехи. Источниками электромагнитных помех могут быть также мощные промышленные установки, транспортные коммуникации, двигатели и т.д. Устройства, чувствительные к статическим магнитным полям (например, магнитные элементы с разомкнутым магнитопроводом), могут неустойчиво работать даже от таких слабых полей, как магнитное поле Земли.

Экраны включаются в конструкцию для ослабления нежелательно-го возмущающего поля в некотором ограниченном объеме до приемлемого уровня или для локализации, где это возможно, действие источника полей. Возможны два варианта защиты. В первом случае экранируемая аппара-тура размещается внутри экрана, а ис-точник помех вне его, во втором - экранируется источник помех, а защищаемая от помех аппаратура распола-гается вне экрана. Первый вариант обычно используют при защите от внешних по-мех, второй - внутренних.

В РЭА функции экранов чаще всего выполняют кожухи, панели и крышки приборов блоков и стоек, при выборе материалов и расчете толщи-ны которых кроме соображений эффективности экранирования необходимо учитывать требования обеспечения механической прочности, жесткости, надежности соединения отдельных элементов.

Отверстия и щели в экранах уменьшают эффективность экранирова-ния, поэтому их необходимо исключать или сводить к минимуму. Однако полностью от них избавиться невозможно. Отверстия вводятся в кожух для установки соединителей, элементов управления, ин-дикации, обеспечения нормального теплового режима. Эффективность эк-рана не ухудшится, если в его конструкции выполнены отверстия, макси-мальные размеры которых не превышают 1/2 минимальной длины волны экранируемого сигнала. Чтобы помеха не проникала через вентиляционные отверстия, на внутренних поверхностях кожухов с отверстиями может закреплять-ся металлическая сетка.

По принципу действия различают электростатическое, магнитостатическое и электромагнитное экранирования.

В качестве экранов могут служат детали шасси и каркасов, обшивки стоек, панелей, субблоков, кассет, специальные листовые металлические прокладки на монтажной стороне плат, блоков, субблоков, и т. д.

С целью улучшения экранировки особо чувствительных к помехам цепей (например, для передачи синхроимпульсов) на обеихсторонах печатных плат сигнальные и заземленные экранные проводники чередуют таким образом, чтобы против сигнальной линии, проходящей с одной стороны платы, всегда располагалась заземленная линия с другой стороны платы. При этом каждая сигнальная линия оказывается окруженной тремя заземленными линиями, в результате чего достигается не только эффективная экранировка сигнальной линии от внешних помех, но и для полезного сигнала обеспечивается подобная волноводу цепь от источника до нагрузки.

Экранирование применяется также для проводов входной и выходной линий, при этом чаще всего оказывается достаточным экранировать только входную цепь. Для устранения гальванической помехи по земле экраны проводов необходимо заземлять в одной точке. При выполнении линий передачи печатным способом вводятся экранирующие трассы, коммутируемые с шиной нулевого потен-циала и выполняющие функции экранов проводов.

Магнитостатическое экранирование. Задача экранирования сводится к уменьшению или полному устранению индуктивной связи между источником и приемником помехи. Если магнитный поток пересекает контур, образуемый проводником, то в контуре наводится помеха. Для полного устранения или уменьшения напряжения помехи, наво-димой в контуре, необходимо:

Поместить контур в экран;

Ориентировать его так, чтобы магнитные силовые линии поля не пересекали контур, а проходили вдоль него;

Уменьшить площадь контура.

Магнитные экраны выполняют как из ферромагнитных, так и немаг-нитных металлов. Ферромагнитные материалы с большой магнитной проницаемостью обладают малым магнитным сопротивлением, в результате чего линии магнитного поля будут шунтированы материалом экрана, и пространство внутри экрана не будет подвергаться воздействию магнитного поля. Магнитное экранирование тем эффективнее, чем больше магнитная проницаемость экрана и толще экран. При выборе материала экрана необходимо помнить, что магнитная проницаемость с увеличением частоты поля уменьшается, и это сказывается на эффективности экранирования. Ферромагнитные материалы эффективно защищают аппаратуру в диапазоне частот от 0 до 10 кГц.

Действие экрана из немагнитного металла основано на вытеснении внешнего магнитного поля из внутреннего пространства прибора материа-лом экрана. Внешнее переменное магнитное поле создает индукционные вихревые токи в экране, магнитное поле которых направ-лено навстречу внешнему полю внутри экрана. У экранов из немагнитных металлов эффективность экранирования повышается с увели-чением толщины и проводимости материала экрана. Магнитное поле часто-той выше 10 МГц достаточно надежно экранируется, если на диэлектриче-ский кожух наносится медное или серебряное покрытие толщиной не более 100 мкм. Толщина немагнитного экрана может в несколько раз превысить толщину ферромагнитного, обеспечивающего на фиксированной частоте оди-наковое ослабление. Использование ферромагнитного материала позволяет значительно снизить массу экрана. При экранировании магнитного поля за-земление экрана не обязательно, поскольку оно не влияет на качество экра-нирования.

Однако перед тем как конструировать экран, необходимо предусмот-реть все меры, чтобы избавиться от помехи более простым и дешевым спо-собом. Например, уменьшение площади контура, пересекаемого силовыми линиями магнитного поля, получают укладыванием сигнальных проводников непо-средственно по заземленным монтажным панелям модулей.

Электромагнитное экранирование охватывает диапазон частот от 1 кГц до 1 ГГц. Действие электромагнитного экрана основано на отражении элек-тромагнитной энергии на границах диэлектрик-экран и ее затухании в толще экрана. Затухание в экране объясняется тепловыми потерями на вихревые токи в материале экрана, отражение - несоответствием волновых параметров материала экрана и окружаю-щей среды. Для нижней границы частотного диапазо-на первостепенное значение приобретает отражение, для верхней границы - поглощение электромагнитной энергии.

Электромагнитное экранирование выполняется как немагнитными, так и магнитными металлами. Немагнитные металлы высокой проводимости можно эффективно использовать в низкочастотной части спектра, ферромагнитные материалы высокой магнитной проницаемости и электрической проводимости - во всем частотном диапазоне элек-тромагнитного поля. Толщина экрана должна быть по возможности наибольшей. Для частот менее 1 МГц хорошие ре-зультаты дают медные и алюминиевые экраны, а при частотах выше 1 МГц - экраны из стали. Однако наилучшие результаты можно полу-чить при применении многослойных экранов - последовательно чере-дующихся слоев магнитных и немагнитных металлов. Возможны различ-ные варианты материалов слоев: медь – пермаллой - медь, пермаллой - медь, медь – сталь - медь и др. Введение воздушных промежутков между слоями (20-40 % суммарной толщины экрана) улучшит эффективность экранирования. При защите аппаратуры от внешнего поля материал с низкой магнитной проницаемостью помещают наружу, с высокой - внутрь. Если экран защищает источник электромагнитного поля, то мате-риал с низкой магнитной проницаемостью должен быть внутренним сло-ем, а с высокой - наружным.


Немагнитные материалы экранов


Материал

Плотность,

Кг/м 3


Сопротивление,

Ом·мм 2 /м


Относительная

Стоимость


Алюминий

2700

0,028

0,29

Латунь

8700

0,06

0,85

Медь

8890

0,0175

0,6

Магний

1740

0,042

0,36

Серебро

10500

0,018

34,0

Цинк

7140

0,059

0,17

В таблицах приведены свойства немагнитных и магнитных металлов. Из немагнитных материалов с позиций минималь-ной стоимости и массы наилучшими свойствами обладает магний, но он легко коррозирует, а образующийся слой окисла ухудшает контакт экра-на с корпусом изделия. Цинк дешевле меди, имеет меньшую плотность, но мягок. Латунь по своим параметрам занимает среднее положение в ряду материалов, но благодаря отличным антикоррозионным свойствам и стабильности сопротивления электрического контакта ее можно реко-мендовать для широкого применения в качестве материала экрана.


Ферромагнитные материалы экранов

В РЭА получили распростране-ние экраны из стали и пермаллоев. Стальные экраны с малой начальной магнитной проницаемостью обеспечивают малое, но постоянное экраниро-вание как на низких, так и на частотах вплоть до десяти килогерц. Экраны из пермаллоев с высокой начальной проницаемостью позволяют получить эффективное экранирование, но в узком диапазоне частот от нуля до не-скольких сотен герц. С увеличением частоты возрастают вихревые токи эк-рана, которые вытесняют магнитное поле из толщи экрана и уменьшают его магнитопроводимость, а это сказывается на эффективности экранирования.

О замеченных опечатках, ошибках и предложениях по дополнению: [email protected] .

Copyright ©2006 Davydov А. V .

Текущая страница: 9 (всего у книги 14 страниц) [доступный отрывок для чтения: 10 страниц]

11.5. Защита от воздействия пыли

Пыль – смесь твердых частиц малой массы, находящаяся в воздухе во взвешенном состоянии. Различают пыль естественную или природную, всегда присутствующую в воздухе, и техническую, которая является следствием износа оборудования, обработки материалов, сжигания топлива и пр.

При относительной влажности воздуха выше 75 % и нормальной температуре наблюдается рост числа частиц пыли, их коагуляция, увеличивается вероятность притяжения пыли к неподвижным поверхностям. При низкой влажности частицы пыли электрически заряжаются, неметаллические – положительно, металлические – отрицательно. Заряд частиц чаще всего возникает из-за трения.

Загрязненность воздуха пылью снижает надежность работы РЭА. Пыль, попадая в смазочные материалы и прилипая к скользящим поверхностям деталей электромеханических узлов, приводит к ускоренному их износу. Под воздействием пыли изменяются параметры и характеристики магнитных лент, дискет, магнитных головок, царапается и приходит в негодность магнитный слой. Пыль в зазорах контактов препятствует замыканию контактов реле.

Оседающая на поверхности некоторых металлов пыль опасна из-за своей гигроскопичности, поскольку уже при относительно небольшой влажности пыль существенно повышает скорость коррозии. Пыль с поглощенными ею растворами кислот разрушает достаточно быстро даже очень хорошие краски. В тропических странах пыль часто является причиной роста плесени.

Слежавшаяся в процессе длительной эксплуатации на поверхности компонентов пыль снижает сопротивление изоляции, особенно в условиях повышенной влажности, приводит к появлению токов утечек между выводами, что очень опасно для микросхем. Диэлектрическая проницаемость пыли выше диэлектрической проницаемости воздуха, что определяет завышение емкости между выводами компонентов и, как следствие, увеличение емкостных помех. Оседающая пыль снижает эффективность охлаждения изделия, образует на поверхностях печатных плат, не защищенных лаковым покрытием, токопроводящие перемычки между проводниками.

Пыленепроницаемость РЭА или отдельных ее устройств может быть достигнута установкой их в герметичные корпуса. Однако при этом возрастает стоимость РЭА и ухудшается температурный режим работы. Если корпус РЭА выполнен с перфорациями, пыль вместе с воздухом проникнет внутрь РЭА естественным путем либо вместе с воздушными потоками от вентиляторов. Уменьшить попадание пыли внутрь РЭА возможно установкой на вентиляционные отверстия мелкоячеечных сеток и противопыльных фильтров.

11.5.1. Герметизация аппаратуры

Герметизация РЭА является надежным средством защиты от воздействия от пыли, влажности и вредных веществ окружающей среды.

Модули конструкции первого уровня защищают покрытием лаком, заливкой эпоксидной смолой, пропиткой, особенно моточных изделий, опрессовкой герметизирующими компаундами на основе органических (смол, битумов) или неорганических (алюмофосфатов, металлометафосфатов) веществ. Герметизация компаундами улучшает электроизоляционные и механические характеристики модуля. Однако низкая теплопроводность большинства компаундов ухудшает отвод теплоты и делает невозможным ремонт.

Полная герметизация путем помещения изделия в герметичный кожух является самым эффективным способом защиты, но и дорогим. При этом возникает необходимость в разработке специальных корпусов, способов герметизации внешних электрических соединителей, элементов управления и индикации. Стенки герметизируемых изделий должны противостоять значительным усилиям из-за разницы давлений внутри и снаружи изделия. В результате увеличения жесткости конструкции возрастает ее масса и размеры.

Существует большое разнообразие способов герметизации. Широко применяются упругие уплотнительные прокладки для всех элементов конструкции по периметру изделия. Проход воздуха через уплотнения при сжатии прокладки на 25…30 % от ее первоначальной высоты происходит только за счет диффузии. В качестве материала прокладок используют резину, обладающую высокой эластичностью, податливостью и способностью проникать в мельчайшие углубления и неровности. Влага со временем проникает через все органические материалы, поэтому изделия с прокладками из органических материалов обеспечивают защиту от водяных паров лишь на протяжении нескольких недель.

Постоянства относительной влажности в определенных пределах внутри герметичного аппарата можно добиться введением внутрь изделия веществ, активно поглощающих влагу. Подобными веществами являются силикагель, хлористый кальций, фосфорный ангидрид. Они впитывают влагу до определенного предела. Например, силикагель поглощает около 10 % влаги от своей сухой массы.

В особых случаях в качестве материалов прокладок применяют медь и нержавеющую сталь с алюминиевым или индиевым покрытием. Такие прокладки чаще всего выполняются трубчатыми с внешним диаметром 2–3 мм при толщине стенок 0,1–…0,15 мм. Усилие поджатия при герметизации металлическими прокладками составляет 20…30 кг на 1 см длины прокладки.

При жестких требованиях к герметичности корпуса изделия герметизацию выполняют сваркой или пайкой по всему периметру корпуса. Конструкция корпуса изделия должна допускать неоднократное выполнение операций разгерметизации/герметизации. В углубление корпуса устанавливается прокладка из жаростойкой резины, на которую укладывается стальная луженая проволока, которая припаивается к корпусу, образуя шов. При разгерметизации изделия шов нагревают, и припой вместе с проволокой удаляется.

При герметизации внутренний объем герметизируемой аппаратуры заполняется инертным газом (аргоном или азотом) с небольшим избыточным давлением. Закачка газа внутрь корпуса осуществляется через клапаны-трубки с последующей герметизацией. Продувка азотом обеспечивает очистку полости корпуса от водяных паров.

Элементы управления и индикации герметизируются резиновыми чехлами, мембранами, электрические соединители – установкой на прокладки, заливкой компаундами.

Выбор способа герметизации определяется условиями эксплуатации, применяемыми материалами и покрытиями, требованиями к электрическому монтажу. Окончательное решение о выборе способа герметизации принимается после проведения натурных испытаний РЭА в камерах влажности .

Контрольные вопросы

1. Влияние климатических факторов на конструкцию.

2. Перечислите виды защиты РЭС.

3. Тепловой режим работы аппаратуры.

4. Способы защиты от воздействия пыли.

5. Для чего применяется герметизация аппаратуры?

Глава 12. Защита от механических воздействий

12.1. Виды механических воздействий на РЭА

Механические воздействия на РЭА появляются под действием внешних нагрузок (вибрации, удары, ускорения, акустические шумы) и могут возникнуть, как в работающей РЭА, если она установлена на подвижном объекте, так и при ее транспортировке в нерабочем состоянии.

Механические воздействия имеют место в работающей РЭА, если она установлена на подвижном объекте, или только при транспортировке ее в нерабочем состоянии, как в случае стационарной и некоторых видов возимой РЭА. Количество переданной энергии определяет уровень и характер изменения конструкции. Допустимые уровни механического изменения конструкции определяются ее прочностью и устойчивостью к механическим воздействиям.

Под прочностью конструкции понимается способность аппаратуры выполнять функции и сохранять параметры после приложения механических воздействий. Устойчивость конструкции – способность РЭА сохранять функции и параметры в процессе механических воздействий.

Откликом, или реакцией, конструкции на механические воздействия называют трансформацию и преобразование энергии механического возбуждения. К ним относятся механические напряжения в элементах конструкции, перемещения элементов конструкции и их соударения, деформации и разрушения конструктивных элементов, изменения свойств и параметров конструкции .

Механические воздействия могут приводить к взаимным перемещениям деталей и узлов, деформации крепежных, несущих и других элементов конструкций, их соударению. При незначительных механических воздействиях в элементах конструкций возникают упругие деформации, не сказывающиеся на работоспособности аппаратуры. Увеличение нагрузки приводит к появлению остаточной деформации и при определенных условиях разрушению конструкции. Разрушение может наступить и при нагрузках, много меньших предельных значений статической прочности материалов, если конструкция окажется подверженной знакопеременным нагрузкам .

Отказы аппаратуры бывают восстанавливаемыми после снятия или ослабления механического воздействия (изменение параметров компонентов, возникновение электрических шумов) и невосстанавливаемыми (обрывы и замыкания электрических соединений, отслаивание проводников печатных плат, нарушение элементов крепления и разрушение несущих конструкций).

На РЭА, установленную на подвижных объектах, в процессе ее эксплуатации воздействует вибрации, ударные нагрузки и линейные ускорения. Гармонические вибрации характеризуются частотой, амплитудой, ускорением. Ударные нагрузки характеризуются числом одиночных ударов или их серией (обычно оговаривают максимальное число ударов), длительностью ударного импульса и его формой, мгновенной скоростью при ударе, перемещением соударяющихся тел. Линейные ускорения характеризуются ускорением, длительностью, знаком воздействия ускорения. Возникающие при вибрациях, ударах и ускорениях перегрузки оценивают соответствующими коэффициентами. Для уменьшения воздействия вибраций и ударов аппаратуру устанавливают на амортизаторы или применяют демпфирующие материалы.

Воздействие линейных ускорений эквивалентно увеличению массы аппаратуры и при значительной длительности воздействия требует увеличения прочности конструкции.

Как показывает опыт эксплуатации транспортируемой РЭА, наибольшее разрушающее воздействие на конструкцию оказывают вибрации. Как правило, конструкция аппарата, выдержавшая воздействие вибрационных нагрузок в определенном частотном диапазоне, выдерживает ударные нагрузки и линейные ускорения с большими значениями соответствующих параметров (для космической РЭА – до 12g, g – ускорение свободного падения).

12.2. Понятие виброустойчивости и вибропрочности

В отношении конструкции РЭА различают два понятия: вибрационная устойчивость и вибрационная прочность .

Вибрационная устойчивость – свойство объекта при заданной вибрации выполнять заданные функции и сохранять значения своих параметров в пределах нормы. Вибрационная прочность – прочность при заданной вибрации и после прекращения ее.

Воздействие транспортной тряски складывается из ударов и вибраций. Введение амортизаторов между РЭА и объектом в качестве среды, уменьшающей амплитуду передаваемых колебаний и ударов, снижает действующие на РЭА механические силы, но не уничтожают их полностью. В некоторых случаях образованная с введением амортизаторов резонансная система влечет за собой возникновение низкочастотного механического резонанса, который приводит к увеличению амплитуды колебаний РЭА.

Понятие жесткости и механической прочности конструкции. При разработке конструкции РЭА необходимо обеспечить требуемую жесткость и механическую прочность ее элементов.

Жесткость конструкции есть отношение действующей силы к деформации конструкции, вызванной этой силой. Под прочностью конструкции понимают нагрузку, которую может выдержать конструкция без остаточной деформации или разрушения. Повышение прочности конструкции РЭА связано с усилением ее конструктивной основы, применением ребер жесткости, контровки болтовых соединений и т. д. Особое значение имеет повышение прочности несущих конструкций и входящих в них узлов методами заливки и обволакивания. Заливка пеноматериалом позволяет сделать узел монолитным при незначительном увеличении массы.

Конструкция как колебательная система. Во всех случаях нельзя допускать образования механической колебательной системы. Это касается крепления монтажных проводов, микросхем, экранов и других частей, входящих в РЭА.


Рис. 12. Колебательная модель механической системы


Основными параметрами любой конструкции с позиций реакции на механические воздействия являются масса, жесткость и механическое сопротивление (демпфирование). При анализе влияния вибраций на конструкции модулей последние представляют в виде системы с сосредоточенными параметрами, в которой заданы масса изделия m, элемент жесткости в виде пружины и элемент механического сопротивления в виде демпфера, характеризующиеся параметрами k и r соответственно , .

Когда частота собственных колебаний системы близка к частоте вынужденных, в колебательной системе возникает явление механического резонанса, что может привести к повреждению конструкции.

Амортизация конструкции РЭА. Один из эффективных методов повышения устойчивости конструкции, как транспортируемой, так и стационарной, к воздействию вибраций, а также ударных и линейных нагрузок – использование амортизаторов. Действие амортизаторов основано на демпфировании резонансных частот, т. е. поглощении части колебательной энергии. Аппаратура, установленная на амортизаторах, в общем случае может быть представлена в виде механической колебательной системы с шестью степенями свободы: совокупностью связанных колебаний, состоящих из линейных перемещений, и вращательных колебаний по каждой из трех координатных осей.

Эффективность амортизации характеризуется коэффициентом динамичности или передачи, числовое значение которого зависит от отношения частоты действующих вибраций f к частоте амортизированной системы f o .

При разработке схемы амортизации необходимо стремиться к тому, чтобы система имела минимальное число собственных частот и чтобы они были в 2–3 раза ниже наименьшей частоты возмущающей силы.

Для амортизированной аппаратуры следует как можно больше уменьшать собственную частоту, а для неамортизированной, напротив, увеличивать, приближая ее к верхней границе возмущающих воздействий или превышая ее.

Схемы размещения амортизаторов. Конструирование системы амортизации РЭА обычно начинается с выбора типа амортизаторов и схемы их размещения. Выбор амортизаторов производят исходя из допустимой нагрузки и предельных значений параметров, характеризующих условия эксплуатации. К таким параметрам относятся: температура окружающей среды, влажность, механические нагрузки, присутствие в атмосфере паров масла, дизельного топлива и т. д.


Рис. 13. Схемы расположения амортизаторов


Выбор схемы расположения амортизаторов зависит от расположения аппаратуры на носителе и условий динамического воздействия. На рис. 13 представлены основные схемы расположения амортизаторов .

Вариант "а " довольно часто используется для амортизации сравнительно небольших по габаритам блоков. Такое расположение амортизаторов удобно с позиций общей компоновки блоков на объекте. Однако при этом расположении амортизаторов принципиально невозможно получить совпадение центра тяжести (ЦТ) с центром масс (ЦМ) и не получить рациональной системы. То же можно сказать про вариант размещения "б ". Вариант размещения "в " позволяет получить рациональную систему, однако такое расположение амортизаторов не всегда удобно при размещении на объекте. Размещение типа "г " и "д " является разновидностью варианта "в " и используется в том случае, если лицевая панель блока размещается вблизи амортизатора, расположенного снизу. Размещение амортизаторов типа "е " используется в стоечной аппаратуре, когда высота РЭА значительно больше глубины и ширины стойки. Чтобы ослабить колебания стойки вокруг осей х и у, ставят дополнительно два амортизатора сверху стойки.

Прочность конструктивных элементов. Механическую прочность элементов конструкции проверяют методами сопротивления материалов и теории упругости для простейших конструкций с распределенной и смешанной нагрузкой. В большинстве практических случаев конструкции деталей РЭА имеют более сложную конфигурацию, затрудняющую определение в них напряжений. При расчетах сложную деталь заменяют ее упрощенной моделью: балкой, пластиной, рамой.

К балкам относят тела призматической формы, длины которых значительно превышают все прочие геометрические размеры конструкции. Концы балок защемляются (сваркой, пайкой), опираются шарнирно-подвижно (установкой в направляющие) или шарнирно-неподвижно (одиночное винтовое соединение). Пластинами считают тела прямоугольной формы, толщина которых мала по сравнению с размерами основания. К подобным конструкциям относят печатные платы, стенки кожухов приборов, стоек, панелей и прочих подобных конструкций. Жесткое закрепление края пластин осуществляется пайкой, сваркой, зажимом, винтовым соединением; шарнирное закрепление – установкой пластин в направляющие, гнездовой соединитель. Рамными конструкциями моделируются многовыводные компоненты: микросхемы, реле, микропроцессоры, ПЛИС .

При проектировании конструкции выполняют моделирование, при котором осуществляются:

– проверочные расчеты, когда форма и размеры детали известны (выявлены при конструировании);

– проектные расчеты, когда размеры опасных сечений неизвестны и их определяют на основе выбранных допустимых напряжений;

– расчеты допускаемых нагрузок по известным опасным сечениям и допустимым напряжениям.

При проведении проверочных расчетов на упругие колебания с учетом направления воздействия вибраций выделяют детали и узлы, имеющие наибольшие деформации, выбирают расчетные модели, рассчитывают собственные частоты, определяют нагрузки и сравнивают полученные значения с пределами прочности выбранных материалов, при необходимости принимают решение о повышении прочности конструкции.

Для увеличения вибропрочности в конструкции отдельных элементов вводятся дополнительные крепления, ребра и рельефы жесткости, отбортовки, выдавки, используются материалы с высокими демпфирующими свойствами, демпфирующие покрытия.

Внешние вибрационные воздействия часто задаются довольно узким диапазоном частот. В правильно сконструированной аппаратуре собственная частота f o конструкции не должна находиться в спектре частот внешних воздействий. Хотя любая конструкция обладает несколькими значениями собственных частот, однако расчет выполняется только для низших значений f o , поскольку деформации конструкций в этом случае будут максимальными. Если низшее значение собственной частоты входит в диапазон внешних воздействий, то конструкцию дорабатывают с целью увеличения f o и выхода из спектра частот внешних воздействий.

Под жесткостью конструкции понимается способность системы (элемента, детали) противостоять действию внешних нагрузок с деформациями, не допускающими нарушение ее работоспособности. Количественно жесткость оценивается коэффициентом жесткости



где Р – действующая сила; δ – максимальная деформация.

Жесткость конструкции зависит от длины, формы и размеров поперечного сечения балки.

Вибрации, направленные ортогонально к плоскости печатной платы, попеременно изгибают ее и влияют на механическую прочность установленных на ней микросхем и компонентов. Если компоненты считать жесткими, то изгибаться будут их выводы. Большинство отказов компонентов происходит из-за поломки паяных соединений выводов с платой. Наиболее жесткие воздействия имеют место в центре платы, а для прямоугольных плат еще и при ориентации тела элемента вдоль короткой стороны платы. Приклеивание компонентов к плате значительно улучшает надежность паяных соединений. Защитное лаковое покрытие толщиной 0,1…0,25 мм жестко фиксирует компоненты и увеличивает надежность РЭА.

Механические напряжения на паяные соединения от воздействия вибраций можно уменьшить: увеличением резонансных частот, что позволяет уменьшить прогиб платы; увеличением диаметра контактных площадок, что повышает прочность сцепления контактной площадки с платой; подгибом и укладыванием выводов элементов на контактную площадку, что увеличивает длину и прочность сцепления паяного соединения; уменьшением добротности платы на резонансе ее демпфированием многослойным покрытием лака.

Фиксация крепежных элементов. При воздействии вибраций возможно отвинчивание крепежных элементов, для предотвращения которого вводят фиксаторы, увеличивают силы трения, устанавливают крепеж на краску и пр. При выборе методов фиксации крепежных элементов должны учитываться следующие соображения: обеспечение прочности соединения при заданных нагрузках и климатических воздействий; быстрота выполнения соединения, его стоимость; последствия, к которым приведет отказ соединения; срок службы.

Следует принимать во внимание возможность замены износившихся или поврежденных деталей, использовать вместо винтовых пар быстро сочленяемые элементы: петли, защелки, собачки и пр. Болты должны быть ориентированы головкой вверх, чтобы при отвинчивании гайки болты оказывались на установочном месте. Рекомендуется применять несколько больших крепежных деталей вместо большого числа маленьких. Число оборотов, необходимых для затягивания или отпускания винта, должно быть не менее 10.

Срок службы конструкции. При колебаниях в конструкциях возникают переменные напряжения и конструкции могут разрушаться при нагрузках, значительно меньших предельной статической прочности материалов из-за появления микротрещин, на рост которых влияют особенности кристаллической структуры материалов, концентрации напряжений в углах микротрещин, условий окружающей среды. По мере развития микротрещин поперечное сечение детали ослабляется и в некоторый момент достигает критической величины – конструкция разрушается.

Если масса изделия не является критическим фактором, то конструкцию упрочняют, используя материалы с запасом, избегают введения отверстий, надсечек, сварных швов, ведут расчеты конструкций методом наихудшего случая.

Защиту от механических воздействий обеспечивает конструкционный материал, который должен удовлетворять заданными механическими и физическими свойствами, обладать легкостью в обработке, коррозионной стойкостью, низкой стоимостью, иметь максимальное отношение прочности к массе и пр. В зависимости от сложности несущую конструкцию выполняют в виде единой детали либо составной, включающей несколько деталей, объединенных в единую конструкцию разъемными или неразъемными соединениями. Основной путь к снижению массы изделий – облегчение несущих конструкций при одновременном обеспечении ими требований прочности и жесткости.

Срок службы конструкции при вибровоздействиях определяется числом циклов до разрушения, которое может выдержать конструкция при заданном уровне механической нагрузки. Усталостные характеристики материалов выявляются на группе образцов при знакопеременной повторяющейся нагрузке.

Решать задачи повышения механической прочности конструкций следует с учетом оптимизации размещения РЭА в отсеках носителей.

Контрольные вопросы

1. Перечислите виды механических воздействий на РЭА.

2. Дайте понятия виброустойчивости и вибропрочности.

3. Понятие жесткости и механической прочности конструкции.

4. Амортизация конструкции РЭА.

5. Перечислите виды амортизаторов.

Методы повышения надежности можно разделить на структурные и информационные.

Структурные методы повышения надежности. Абсолютной надежности технических устройств добиться принципиально невозможно, а максимально повысить показатели их надежности реально, и это является важнейшей научной и технической задачей. Повышение уровня надежности РЭА достигается, прежде всего, устранением причин, вызывающих в ней отказы, т. е. сведением к минимуму конструкторских, технологических и эксплуатационных ошибок.

Значительного повышения надежности РЭА достигают созданием новых элементов. Так, применение интегральных схем для построения РЭА привело к значительному повышению надежности аппаратуры третьего и четвертого поколений.

Однако повышением надежности элементов не удается полностью решить проблему построения надежных РЭА, что вызвано значительным опережением роста сложности вновь разрабатываемых РЭА, большими затратами при получении элементов высокой надежности, а также существованием элементов, надежность которых довольно низка и трудно поддается повышению. Поэтому один из путей повышения надежности РЭА - введение схемной избыточности.

Повышение надежности РЭА резервированием. Резервирование - способ повышения надежности аппаратуры, заключающийся в дублировании РЭА в целом или отдельных ее модулей или элементов. Резервирование предполагает включение в схему устройства дополнительных элементов, которые позволяют скомпенсировать отказы отдельных частей устройств и обеспечить его надежную работу. Но резервирование эффективно только в том случае, когда неисправности являются статистически независимыми. Различают следующие виды резервирования: постоянное (резервные элементы включены вместе с основным и функционируют в тех же режимах); резервирование замещением (обнаружение отказавшего элемента и замена его резервным); скользящее резервирование (любой резервный элемент может замещать любой отказавший).

Если P c (t) - вероятность безотказной работы системы, то установка и включение параллельно нескольких таких же систем приводит к увеличению результирующей вероятности безотказной работы резервированной системы P(t), которую можно определить из выражения:

P(t) = 1 - m+1 ,

где m - число резервных систем, включенных параллельно основной. Так, например, при вероятности безотказной работы модуля 0,7 включение одного резервного модуля повысит вероятность безотказной работы до 0,91, а двух - до 0,973.

В РЭА применяется общее (резервируются отдельные модули), и поэлементное резервирование на уровне микросхем или отдельных элементов. При одинаковом количестве резервных элементов поэлементное резервирование эффективнее общего, но требует большого числа дополнительных электрических связей.

Постоянное резервирование в РЭА производят по следующей схеме: входные сигналы поступают на n логических схем, причем n> k, где k -- число логических схем в нерезервированной схеме. Выходные сигналы всех n логических схем далее подают на решающий элемент, который согласно функции решения по этим сигналам определяет значения выходных сигналов всей схемы. Функция решения - правило отображения входных состояний решающего элемента на множество его выходных состояний.

Простейший и наиболее распространенный вид функции решения - «закон большинства», или мажоритарный закон. Решающий элемент обычно называют мажоритарным элементом. Работа мажоритарного элемента состоит в следующем: на входы элемента поступают двоичные сигналы от нечетного количества идентичных элементов; выходной сигнал элемента принимает значение, равное значению, которое принимает большинство входных сигналов. Наиболее широко используют мажоритарные элементы, работающие по закону «2 из З». В этих элементах значение выходного сигнала равно значению двух одинаковых входных сигналов.

Кроме того, известны мажоритарные элементы, работающие по закону «З из 5», «4 из 7» и т. д. Схема мажоритарного элемента, работающего по закону «2 из З» и построенного из логических элементов И и ИЛИ, основана на выражении z = x 1 x 2 + x 2 x 3 + x 1 x 3 и имеет вид, изображенный на рис. 7.4.1.

Рис. 5.3.1.

По способу включения резервных элементов функциональных устройств различают три вида резервирования: постоянное, замещением и скользящее.

При постоянном резервировании предполагают, что любой отказавший элемент или узел не влияет на выходные сигналы и поэтому его прямого обнаружения не производится. Постоянное резервирование наиболее распространено в невосстанавливаемых устройствах. Кроме того, оно является единственно возможным в устройствах, где недопустим даже кратковременный перерыв в работе.

Постоянное резервирование вводится или с помощью решающего блока, или в виде однотипных элементов или блоков, включенных последовательно, параллельно или, например, согласно законам k-кратной логики.

В качестве решающего блока можно использовать мажоритарные элементы с постоянными или переменными весами, кодирующие - декодирующие устройства и схемы из логических элементов И, ИЛИ, НЕ.

Резервирование замещением предполагает обнаружение отказавшего элемента или узла и подключение исправного. Замещение может происходить либо автоматически, либо вручную.

Резервирование замещением имеет следующие достоинства. Для многих схем при включении резервного оборудования не требуется дополнительно регулировать выходные параметры, вследствие того, что электрические режимы в схеме не меняются. Резервная аппаратура до момента включения в работу обесточена, что повышает общую надежность системы за счет сохранения ресурса электронных устройств. Имеется возможность использования одного резервного элемента на несколько рабочих.

Вследствие сложности аппаратуры для автоматического включения резерва резервирование замещением целесообразно применять к крупным блокам и отдельным функциональным частям РЭА.

При скользящем резервировании любой резервный элемент может замещать любой основной элемент. Для осуществления этого резервирования необходимо иметь устройство, которое автоматически находит неисправный элемент и подключает вместо него резервный. Достоинство такого резервирования в том, что при идеальном автоматическом устройстве будет наибольший выигрыш в надежности по сравнению с другими методами резервирования. Однако осуществление скользящего резервирования возможно лишь при однотипности элементов.

Информационные методы повышения надежности РЭА. Основное применение информационные методы находят в вычислительной технике. Реализуются они в виде корректирующих кодов. Назначение этих кодов состоит в том, чтобы обнаруживать и исправлять ошибки в РЭА без прерывания их работы.

Корректирующие коды предусматривают введение в изделия некоторой избыточности. Различают временную и пространственную избыточность. Временная избыточность характеризуется неоднократным решением задачи. Полученные результаты сравниваются, и если они совпадают, то делается вывод, что задача решена правильно. Временная избыточность вводится в РЭА программным путем.

Пространственная избыточность характеризуется удлинением кодов чисел, в которые вводят дополнительно контрольные разряды. Суть обнаружения и исправления ошибок с помощью корректирующих кодов состоит в следующем. В конечном множестве А выходных слов устройства выделяют подмножество В разрешенных кодовых слов (т. е. В А). Эти слова могут появиться лишь в том случае, если все арифметические и логические операции, выполняемые РЭА, осуществляются правильно. Тогда очевидно, что подмножество А - В = С(A B = С) будет характеризовать запрещенные кодовые слова. Последние имеют место только при наличии ошибок.

Далее все слова на выходе устройства анализируют. Например, если слово b i относится к подмножеству разрешенных кодовых слов (т. е. b B), то это означает, что процесс идет нормально; слово b i считают правильным и его можно декодировать.

Если на выходе устройства появляется запрещенное кодовое слово с i (c i C), то это свидетельствует о наличии ошибки, и она фиксируется.

Для устранения обнаруженных таким образом ошибок все запрещенные кодовые слова разбиваются на группы. Каждой такой группе ставится в соответствие только одно разрешенное кодовое слово. При декодировании запрещенные кодовые слова с i автоматически заменяются разрешенными кодовыми словами из той группы, к которой принадлежит c i .

Таким образом, корректирующие коды в состоянии не только обнаруживать ошибки, но и устранять их.

Расчет надежности РЭА . Определив из ТЗ требуемую вероятность безотказной работы аппаратуры, конструктор распределяет эту вероятность по составляющим РЭА модулям, подбирает элементы с необходимыми интенсивностями отказов, выявляет потребность и глубину резервирования, принимает меры по защите аппаратуры от воздействий дестабилизирующих факторов.

Расчет надежности РЭА состоит в определении числовых показателей надежности P(t) и Т ср по известным интенсивностям отказов комплектующих РЭА элементов. При этом считается, что, если выход из строя любого элемента приводит к выходу из строя всей РЭА, то имеет место последовательное включение элементов. Усредненные данные по интенсивностям отказов микросхем, электрорадиоэлементов, узлов и электрическим соединениям известны /2/.

При конструировании необходимы данные об ожидаемых изменениях характеристик элементов в течение всего срока службы РЭА. Например, если разрабатывается аппаратура со сроком службы 10 лет, то необходимо предварительно в течение 10 лет, если не используется какой-либо метод ускоренных испытаний, собирать данные об изменении параметров комплектующих элементов, что в общем случае нереально, так как за это время может устареть как элементная база, так и сама разрабатываемая РЭА

Поэтому трудно ожидать совпадения реального и рассчитанного поведения системы, но расчеты надежности необходимо выполнять, так как в ТЗ на разработку всегда указываются требуемые показатели надежности.

Вероятность безотказной работы системы обычно вычисляется с использованием выражений:

P c (t) = exp(-(t) dt), (t) =? i (t),

где? i (t) - интенсивность отказов i-го модуля, n - число модулей системы.

Модули одного иерархического уровня имеют приблизительно равную надежность. Тогда для системы из К групп модулей одного уровня:

P c (t) = exp(- n i ? i (t) dt), (t) =n i ? i (t),

где n i - число модулей i-го уровня иерархии.

Для экспоненциального закона распределения, когда интенсивность отказов можно считать величиной постоянной:

(t) = = const, P c (t) = exp(-t).

В общем случае надежность конструкции зависит от соотношения прочности и устойчивости к нагрузке, которую приходится выдерживать аппаратуре в процессе эксплуатации. Под прочностью здесь понимается способность аппаратуры выдерживать без разрушений внешние температурные, механические, влажностные и прочие воздействия, под устойчивостью - способность к работе при тех же воздействиях

Создание аппаратуры без излишних запасов прочности - важная и сложная задача, поскольку конструктор не всегда имеет четкие количественные параметры внешних воздействий, отсутствуют или имеются неточные математические модели, позволяющие весьма ориентировочно произвести указанную оценку. Это приводит к внесению в конструкцию завышенных запасов прочности и устойчивости, так называемых коэффициентов незнания, уточнение которых - условие успешного обеспечения заданной надежности при минимальной себестоимости.

Надежность РЭА зависит не только от выбора схемы и технических характеристик аппаратуры, но и от режимов работы и условий эксплуатации; от технологии производства и используемой в производстве системы контроля качества изделий; от качества исходных материалов и комплектующих элементов; от уровня квалификации производственного, контролирующего и эксплуатирующего аппаратуру персонала.

Обеспечить высокую надежность аппаратуры можно суммой мероприятий, выполняемых на всех этапах разработки, производства и эксплуатации. Особое место в этом процессе принадлежит этапу разработки, так как основные принципы обеспечения надежности выбираются на этом этапе.

Требования к надежности разрабатываемого изделия задаются в техническом задании. На ранних стадиях разработки изделия составляется план обеспечения надежности, который на последующих стадиях разработки детализируется и уточняется. Одним из элементов этого плана является расчет надежности проектируемого изделия. Первые расчеты надежности делают на ранних стадиях разработки, а с уточнением сведений об изделии уточняются и расчеты надежности.

Существующие методы позволяют получить расчетным путем количественные характеристики надежности разрабатываемого изделия и сопоставить эти характеристики с заданными в техническом задании. Все расчеты надежности РЭА в основном сводятся к определению вероятности безотказной работы и средней наработки до первого отказа по известным интенсивностям отказов элементов схемы. В зависимости от полноты учета факторов, влияющих на работу изделия и его надежность, проводят три расчета надежности: предварительный, ориентировочный и окончательный.

Предварительный расчет надежности (прикидочный) позволяет судить о принципиальной возможности обеспечения требуемой надежности изделия. Этот расчет используется при проверке требований надежности, выдвинутых заказчиком в техническом задании, при сравнительной оценке надежности отдельных вариантов выполнения изделия. При предварительном расчете делается допущение, что все элементы схемы равнонадежны, так как принципиальные схемы на изделие и его составные части еще окончательно не разработаны. Соединение элементов с точки зрения надежности таково, что выход из строя одного элемента приводит к отказу всего изделия (последовательное включение элементом по надежности, при этом не следует путать с электрическим соединением). Интенсивности отказов элементов берутся для периода нормальной работы, т.е. . Тогда



где – интенсивность отказа системы;

– средняя интенсивность отказов равнонадежных элементов схемы;

– общее количество элементов схемы.

Ориентировочный расчет надежности производится тогда, когда на изделие и его составные части разработаны схемы электрические принципиальные. При ориентировочном расчете учитывается влияние на надежность изделия количества и типов применяемых в схеме элементов. При расчете делаются следующие допущения: все элементы схемы работают в нормальных режимах, предусмотренных техническими условиями на эти элементы; все элементы изделия работают одновременно; интенсивности отказов элементов берутся для периода нормальной работы, т.е. . Интенсивности отказов элементов каждого типа берутся по соответствующим таблицам из справочников по надежности или из технических условий. В табл. 6.5 приведены усредненные характеристики интенсивности отказов отдельных элементов радиоэлектронных схем.

Таблица 6.5 – Интенсивность отказов элементов РЭА

Наименование элемента Интенсивность отказов l, час -1
Резисторы
Сопротивления постоянные 0,2×10 -5
Сопротивления регулируемые (проволочные) 1,5×10 -5
Конденсаторы
Конденсаторы постоянные 0,4×10 -5
Конденсаторы переменной емкости 1,8×10 -5
Индуктивные элементы
Трансформаторы и дроссели 1,0×10 -5
Катушки индуктивности 0,1×10 -5
Реле 2×10 -5
Сельсины и электродвигатели 5×10 -5
Приборы
Приборы измерительные стрелочные 5×10 -5
Электровакуумные приборы 10×10 -5
Полупроводниковые диоды и транзисторы 0,01×10 -5
Микросхемы
Микросхемы средней степени интеграции 0,1×10 -5
Большие интегральные схемы 0,01×10 -5
Элементы соединительные
Разъемные контакты 0,05×10 -5
Пайки 0,01×10 -5
Провода монтажные и печатные 0,001×10 -5

Интенсивность отказа РЭА определяется выражением

где – интенсивность отказа i – того типа элемента (конденсатор, резистор, транзистор, интегральная схема и т.д.) выбирается по справочным данным;

– количество i – тых типов элементов (конденсаторов, резисторов, транзисторов, интегральных микросхем и т.д.);

– количество типов элементов.

Ориентировочный расчет надежности позволяет определить рациональный состав элементов в изделии и наметить пути повышения надежности.

Окончательный расчет надежности проводится на этапе технического проектирования и учитывает влияние на характеристики надежности режимов работы элементов в схеме и конкретные условия эксплуатации изделия. В общем случае интенсивности отказов элементов зависят от электрического режима работы элементов в схеме, температуры окружающей среды (особенно для полупроводников приборов, составляющих значительную долю РЭА), механических воздействий в виде перегрузок, вибраций и ударов, влажности воздуха, давлении, радиации и ряда других факторов. Электрический режим работы учитывают с помощью коэффициента нагрузки , который определяется по результатам электрического расчета схемы для конкретного элемента. В общем случае коэффициент нагрузки определяю выражением

где – фактическая рассеиваемая мощность на элементе (определяется расчетным путем);

– номинальная рассеиваемая мощность на элементе.

Например, для резистора типа МЛТ–0,25–1К±5% номинальная мощность =0,25 Вт, а фактическая рассеиваемая мощность может быть определена расчетным путем по формулам

,

где – ток, протекающий через резистор;

– напряжение, падающее на резисторе;

– сопротивление резистора (в нашем случае 1 Ком).

Если через резистор протекает различный ток или на нем падает различное напряжение, то в расчетах часто выбирают максимальное значения тока или напряжения, что значительно облегчает расчет схемы, а фактические показатели надежности будут выше, чем расчетное значение.

Для емкостей коэффициент нагрузки будет определяться соотношением фактического напряжения и номинального, задаваемого при выборе конденсатора. Например, конденсатор К50-3-200мкф-25В, установленный в схему с напряжением 15В, имеет фактическое напряжение = 15В, а номинальное = 25В. Коэффициент нагрузки, определяемый как соотношение мощностей (), будет

Соответственно для катушек индуктивности () коэффициент нагрузки определяется выражением

где – фактический ток в катушке индуктивности;

– номинальное значение тока в катушке, которое определяется выражением

где – сечение провода катушки в мм 2 ;

– допустимая плотность тока (для медных проводов =10 А/мм 2).

Для выпрямительных диодов коэффициент нагрузки может быть определен выражением

где – фактическое обратное напряжение на диоде (обычно напряжение источника питания);

– фактический прямой ток в диоде (обычно ток нагрузки);

– обратное пробивное напряжение диода (берется из справочных данных на конкретный диод);

– максимально допустимый прямой ток диода (справочные данные).

Для транзисторов коэффициент нагрузки определяют выражением

,

где – напряжение питания транзистора;

– ток в цепи коллектора (максимальный ток в цепи коллектора при открытом транзисторе);

– максимально допустимое напряжение на переходе коллектор-эммитер конкретного транзистора (справочные данные);

– максимально допустимый ток в коллекторе транзистора (справочные данные).

Для интегральных микросхем, имеющих номинальное напряжение питания (например, 5 В), коэффициент нагрузки определяется нагрузкой на выходе микросхемы, т.е. током в выходной цепи микросхемы, по формуле

где – фактический ток на выходе микросхемы;

– номинальное значение тока на выходе микросхемы (справочные данные).

Если микросхема имеет несколько выходов, то определяют коэффициенты нагрузки по каждому выходу. В расчетах для микросхемы могут брать усредненное значение коэффициентов нагрузки либо наибольшее значение из всех коэффициентов нагрузки. При этом коэффициент нагрузки на микросхему не должен быть больше 1.

Для разъемов коэффициент нагрузки определяют как отношение фактического тока через контакт к максимально допустимому току для контакта данного разъема (справочные данные на разъем).

При окончательном расчете показателей надежности важным условием является знание зависимости интенсивности отказов элементов от воздействия внешних факторов. Наиболее существенными внешними факторами являются температура окружающей среды, механические нагрузки, влажность и атмосферное давление. Влияние на величину интенсивности отказов каждого из перечисленных факторов учитывается с помощью поправочных коэффициентов и . Поправочный коэффициент учитывает влияние на надежность электрической нагрузки и температуры, а поправочные коэффициенты учитывают механические воздействия, влажность, давление. Эти коэффициенты определяются как отношение интенсивности отказа данного элемента при конкретном воздействующем факторе и прочих номинальных условиях к номинальной интенсивности отказа элемента в нормальных условиях эксплуатации при отсутствии механических перегрузок и в номинальном электрическом режиме ( =1). Значения номинальных интенсивностей отказов основных элементов РЭА (табл. 6.5) и коэффициентов помещены в справочники по надежности в виде таблиц.

Поправочные коэффициенты определяются по справочным данным, которые приводятся в виде таблиц или в виде графиков зависимости

где – температура окружающей среды, °С.

Температура является одним из дестабилизирующих факторов для полупроводниковых элементов. На рис. 6.6 приведена типовая зависимость поправочного коэффициента от температуры и коэффициента нагрузки для транзистора. Из графика видно, что при снижении коэффициента нагрузки поправочный коэффициент снижается, т.е. за счет облегчения режима работы элемента в схеме можно повысить надежность этого элемента и, следовательно, улучшить характеристики изделия в целом. Однако слишком малое значение коэффициента нагрузки приводит к неоправданному удорожанию изделия. Поэтому область рекомендуемых параметров находится в пределах от 0,1 до 0,9.

Значение интенсивности отказа элемента с учетом коэффициента нагрузки и температуры определяется выражением

где – интенсивность отказа элемента с учетом нагрузки и температуры;

– интенсивность отказа элемента в номинальных режимах работы (справочные данные).


Рисунок 6.6 – Типовая зависимость от температуры и коэффициента нагрузки для полупроводников

При обеспечении температурных режимов для элементов РЭА (особенно для полупроводников) в пределах до 50°С (установка радиаторов, обдув, охлаждение) и невысоких нагрузках ( <0,5) в расчетах можно приближенно считать = .

При проведении расчетов определяют численное значение интенсивностей отказов элементов РЭА, из которых выявляются элементы с наибольшей интенсивностью отказов. Эти элементы в основном и определяют интенсивность отказа РЭА в целом. Для повышения расчетных показателей надежности РЭА (уменьшение параметрических отказов) используются следующие методы:

– минимизация количества элементов схемы;

– выбор элементной базы с меньшей интенсивностью отказов ;

– выбор щадящих режимов работы (уменьшение );

– резервирование.

Резервирование – это метод повышения надежности путем введения запасных (резервных) элементов, являющихся избыточными по отношению к функциональной структуре РЭА, необходимой для выполнения заданных функций. При резервировании отказ наступает тогда, когда выйдут из строя основной и резервные элементы.

Очевидно, что интенсивности отказа основного и резервного элемента должны быть одинаковы. Не имеет смысла резервировать надежный элемент не надежным, так как стоимость РЭА возрастает, а эффект такого резервирования оказывается низким. Точно также нет смысла ненадежный элемент резервировать надежным, так как целесообразней установить сразу надежный элемент. Поэтому, как правило, основной и резервный элемент имеют одинаковую интенсивность отказа.

Под кратностью резервирования понимают отношение числа резервных изделий (элементов) к числу основных. Различают резервирование с целой и дробной кратностью. Например, если =3, то число резервных элементов три, а основных – одно. Если =4/2, то количество резервных элементов равно четырем, а основных – два (сокращение дроби здесь не допускается).

,

При резервировании ненагруженными линиями (элементами) или замещением резервный элемент включается после выхода из строя основного элемента. Предполагается, что вероятность безотказной работы переключателей намного выше, чем у элементов схемы и близка к единице. Для такого случая

,

где – рабочее время системы.

Например, при резервировании ненагруженными элементами с =1 средняя наработка на отказ будет

что выше, чем при резервировании нагруженными элементами.

Выше были рассмотрены метолы повышения надежности параметрических отказов РЭА. Для повышения надежности от внезапных отказов, большинство из которых проявляются на начальной стадии эксплуатации РЭА и вызываются схемными и конструкторскими ошибками, а также отступлениями от технологических процессов изготовления, применяют следующие методы:

– входной контроль комплектующих элементов;

– выходной контроль изделия;

– испытание изделия (на вибростендах, в климатических камерах и т.д.);

– техническое обслуживание (после хранения или транспортировки, а для систем пилотируемых КА и при эксплуатации).

Введение

1. Выбор и обоснование схемы электрической принципиальной

4. Расчеты надежности при проектировании РЭА

Спецификация

Литература


Введение

Полупроводниковая электроника – прогрессирующая область науки и техники. Уже в первом десятилетии с момента изобретение транзисторов полупроводниковые приборы нашли широкое применение в самой разнообразной аппаратуре, основательно потеснив вакуумные лампы. Это было связанно с их преимуществом перед последними, такими как малая потребляемая мощность, отсутствие цепей накала, миниатюрное конструктивное исполнение, высокая механическая прочность и практически мгновенная готовность к работе, что позволило коренным образом изменить внешний облик и функциональные возможности аппаратуры. Существенно уменьшились ее габаритные размеры и энергоемкость. В частности, широкое распространение получили малогабаритные переносные радиоприемники, магнитофоны, телевизоры с батарейным питанием. Неизмеримо расширились возможности вычислительной техники: резко возросла вычислительная мощь и быстродействие ЭВМ при значительном снижении габаритных размеров и энергопотребления. Благодаря дискретным полупроводниковым приборам, аппаратура уверенно шагнула на борт самолета, ракеты, проникла в космос, все больше и больше принимая на себя функции управления процессами и различными объектами, являющийся ранее безраздельной областью деятельности человека.

Внедрение полупроводниковых приборов и интегральных микросхем в радиоэлектронную аппаратуру проходило в условиях преодоления существенных трудностей. Одной из основных при этом была проблема обеспечения высокой надежности функционирования приборов в аппаратуре. Теоретически долговечность идеального полупроводникового прибора исчислялась несколькими сотнями лет. И такое прогнозирование следует считать обоснованием, так как оно базируется на том, что долговечность прибора, в котором отсутствует движущиеся механические части и в качестве активной области используется твердый полупроводник, определяется в основном износостойкостью конструкционных материалов и скорость деградационных физико-химических процессов, стимулируемых прохождением тока через прибор и факторами внешних воздействий. На практике столь многообещающие прогнозы не подтвердились. Реальные полупроводниковые приборы, пришедшие на смену лампам, имели сравнительно низкую долговечность и выходили из строя.

Возникновение проблемы надежности в электроники относят к началу пятидесятых годов, когда развитие техники привело к созданию сложной радиоэлектронной аппаратуры и передачи ей основных функций управления. В этот период специалисты столкнулись с очень частыми отказами аппаратуры и, в первую очередь, за счет ее схемотехнического несовершенства и некачественных элементов. Для преодоления создавшихся трудностей необходим был научно обоснованный подход к обеспечению высокой работоспособности различной аппаратуры и приборов в нее входящих. Этот подход и вылился в создание нового научно направления – науки о надежности.

Основные положения общей теории надежности являются фундаментом для разработки прикладных вопросов надежности в различных областях техники, в том числе и в полупроводниковой электронике.

Большой объем работ, направленных на повышение надежности полупроводниковых приборов и интегральных микросхем, у нас в стране и за рубежом, и достигнутые успехи в этой области обеспечивают в большинстве случаев функционирование приборов в эксплуатации с надежностью, характеризуемой интенсивностью отказов. Однако постоянный рост сложности радиоэлектронной аппаратуры, расширение выполняемых ею управляющих функций выдвигают все более жесткие требования к комплектующим изделиям. Это в свою очередь стимулирует расширение фронта работ в области надежности и вызывает необходимость периодического обобщения получаемых результатов.

Материальной основой всей системы является подсистема сбора данных о надежности и анализ отказов приборов на всех этапах их жизненного цикла. Согласованность всех составляющих системы обеспечения надежности, постоянное совершенствование организационных основ системы должно идти в ногу с прогрессом в области полупроводниковой электроники.


1. Выбор и обоснование схемы электрической структурной

Блок преобразования кодов предназначен для преобразования двоично-десятичного кода технологических программ в двоичный код и обратное преобразование двоичного кода в двоично-десятичный с целью получения откорректированных перфолент и дубликатов с помощью перфоратора ПЛ.

Блок состоит из субблоков:

SB-443 3.082.443 Э3 – интерфейс;

SB-442 3.082.442 Э3 – общая часть преобразователя;

SB-441 3.082.441 Э3 – преобразование из двоичного кода в двоично-десятичный (2/2-10);

SB-440 3.082.440 Э3 – преобразование из двоично-десятичного кода в двоичный (2-10/2).

ЦП осуществляет управление блоком через регистры, которые имеют адреса:

166622 – РД 1 слово;

166624 – РД 2 слово;

Формат РС, разряды:

2 1 – преобразование 2-10/2, пишется, читается ЦП;

2 2 – преобразование 2/2-10, пишется, читается ЦП;

Обмен данными между ЦП и блоком осуществляется посредством программных операций.

Поскольку блок БПК и блок умножения имеют один интерфейс, то обращение к блокам определяется разрядом адреса АО4. Для БПК разряд АО4 равен единице, для блока умножения – нулю.

Адреса регистров БПК, пройдя через шинные формирователи (микросхемы D1 - D4), расшифровываются в СА (микросхемы D9, D10, D15) и запоминаются в регистре адреса РА (микросхемы D11, D12 субблока SB-443).

Управляющие сигналы «А00 – А04», «БАЙТ», «ВЫВОД» поступают на общую ячейку преобразователя кодов и используются для записи информации в РД (микросхемы D5 – D11) и РС (микросхемы D13, D14).

Данные с РД поступают в преобразователи кодов, где в зависимости от вида преобразования, определяемого состоянием разрядов РС, происходит преобразование кодов.

2. Основные определения теории надежности

Вся промышленная продукция, в том числе полупроводниковые приборы и интегральные микросхемы характеризуются таким параметром как качество, представляющий собой совокупность свойств продукции, обуславливающих ее пригодность удовлетворять определенные потребности в соответствии с назначением.

Свойства продукции делятся на простые и сложные. Надежность определяется одним из фундаментальных сложных свойств продукции и определяется как свойство объекта сохранять во времени, в установленных приделах, характеризующее способность выполнять требуемые функции в данных режимах и условиях применения технического обслуживания, ремонта, хранения и транспортирования.

Для описания конкретного прибора пользуются понятиями исправного и работоспособного состояния. Под исправными подразумевается состояние прибора, при котором он соответствует всем требованиям нормативной или конструктивной документации.

Работоспособность такое состояние, при котором все параметры, которые характеризует способность прибора выполнять заданные функции соответствуют нормативно-технической или конструкторской документации, способным выполнять основные функции в данном состоянии, либо повреждения, не влияющие на электрические параметры (нарушение маркировки, сколы, царапины, вмятины на корпусе).

Фундаментальным понятием теории надежности является определение отказа, как события, заключающегося в нарушении работоспособного состояния. При этом под нарушением работоспособного состояния понимается либо внезапное прекращение функционирования прибора, либо значительные изменения электрических параметров. Характеристикой прибора, связанной с его эксплуатацией является наработка, представляющая собой продолжительность объема работы прибора. Наработка измеряется в часах. Наработка прибора в часах от начала эксплуатации до наступления предельного состояния называют техническим ресурсом. Календарная продолжительность от начала эксплуатации до наступления предельного состояния называют сроком службы. Под безотказностью понимают свойство прибора непрерывно сохранять работоспособное состояние в течении некоторого времени или некоторой наработки.

Из этого следует, что данное свойство отражает основное содержание надежности, так как главное назначение любого прибора, используемого по прямому назначению исправно выполнять предназначенные ему функции в течении определенного промежутка времени.

Применительно к полупроводниковым приборам и микросхемам под безотказностью понимается способность непрерывно сохранять исходные параметры при использовании в выпрямительном, усилительном, переключательном и других режимах, обусловленных схемами и условиями эксплуатации.

3. Количественные характеристики теории надежности

Для оценки аппаратуры используются критерии надежности.

Критерий надежности – признак, по которому оценивается надежность различных изделий, а характеристика – количественное значение критерия надежности конкретного изделия.

Статьи по теме: