Виды сварочных швов и соединений. Виды сварных соединений и швов. По числу слоёв

Сварочные швы – зоны сварных соединений, которые образованы первоначально расплавленным, а затем кристаллизованным при остывании металлом.

Срок службы всей сварочной конструкции зависит от качества сварочных швов. Качество сварки характеризуется следующими геометрическими параметрами сварного шва:

  • Ширина – расстояние между его краями;
  • Корень – внутренняя часть, противоположная его внешней поверхности;
  • Выпуклость – наибольший выступ от поверхности соединяемого металла;
  • Вогнутость – наибольший прогиб от поверхности соединяемого металла;
  • Катет – одна из равных сторон треугольника, вписанного в поперечное сечение двух соединяемых элементов.

Какие бывают сварочные швы и соединения, классификация

В таблице 1 приведены основные типы сварочных соединений, сгруппированные по форме поперечного сечения.

Сварные соединения и швы Особенности расположения Основное применение Примечание
1 Стыковые
Соединяемые детали, элементы находятся в одной плоскости. Сварка конструкций из листового металла, резервуаров и трубопроводов. Экономия расходных материалов и времени на сварку, прочность соединения. Тщательная подготовка металла и выбор электродов.
2 Угловые

Соединяемые детали, элементы расположены под любым углом относительно друг друга. Сварка емкостей, резервуаров. Максимальная толщина металла 3 мм.
3 Нахлесточные

Параллельное расположение деталей. Сварка конструкций из листового металла до 12 мм. Большой расход материала без тщательной обработки.
4 Тавровые (буквой Т) Торец одного элемента и боковая часть другого находятся под углом Сварка несущих конструкций. Тщательная обработка вертикального листа.
5 Торцовые

Боковые поверхности деталей примыкают друг к другу Сварка сосудов без давления Экономия материала и простота исполнения

По способу выполнения:

  • Двухсторонние – сварка с двух противоположных сторон с удалением корня первой стороны;
  • Однослойные – выполнение за один «проход», с одним наплавленным валиком;
  • Многослойные – число слоев равно числу «проходов». Применяется при большой толщине металла.

По степени выпуклости:

  • Выпуклые – усиленные;
  • Вогнутые – ослабленные;
  • Нормальные – плоские.

На выпуклость шва влияют используемые сварочные материалы, режимы и скорость сварки, ширина разделки кромок.

По положению в пространстве:

  • Нижние – сварка ведется под углом 0° – наиболее оптимальный вариант, высокие производительность и качество;
  • Горизонтальные – сварка ведется под углом от 0 до 60° требуют повышенной
  • Вертикальные- сварка ведется под углом от 60 до 120° квалификации сварщика;
  • Потолочные – сварка ведется под углом от 120 до 180° – наиболее трудоемкие, небезопасные, сварщики проходят специальное обучение.

По протяженности:

  • Сплошные – самые распространенные;
  • Прерывистые – негерметичность конструкции.

Виды сварных соединений и швов по взаимному расположению:

  • Расположены по прямой линии;
  • Расположены по кривой линии;
  • Расположены по окружности.

По направлению действующего усилию и вектору действия внешних сил:

  • фланговые – вдоль оси сварного соединения;
  • лобовые – поперек оси сварного соединения;
  • комбинированные – сочетание фланговых и лобовых;
  • косые –под некоторым углом к оси сварного соединения.

Виды сварных швов по форме свариваемых изделий:

  • на плоских поверхностях;
  • на сферических.

Виды швов зависят также от толщины рабочего материала и от длины самого стыка:

  • короткие – не > 25 см, при этом сварка производится способом «за один проход»;
  • средние – длиной < 100 см – используется обратно-ступенчатый способ сварки, при этом строчка разбивается на малые отрезки длиной в 100-300 мм;

Все протяженные швы обрабатываются обратно-ступенчатым способом, от центра к краям.

Разделка кромок под сварку

Для создания прочного и качественного сварного шва кромки соединяемых изделий проходят необходимую подготовку и им придается определенная форма (V, X, U, I, K, J, Y – образная). Во избежание прожога подготовку кромок можно выполнять при толщине металла не менее 3 мм.

Порядок подготовки кромок:

  1. Очищение краев металла от ржавчины и загрязнений;
  2. Снятие фасок определенного размера – в зависимости от способа сварки;
  3. Величина зазора – в зависимости от типа сварных соединений.

Параметры подготовки кромок:

В таблице 2 приведены особенности подготовки кромок в зависимости от толщины металла.

Таблица 2

№,п/п Толщина металла, мм Разделка кромки Угол, α Зазор b,мм Притупление кромок c, мм
1 3-25 Односторонняя

V-образная

50
2 12-60

Двухсторонняя

X-образная

60
3 20-60

Односторонняя, двухсторонняя

U-образная

2 1-2
4 >60 I-образная

Основные типы сварных соединений. Сварным соединением называется неразъемное соединение деталей, выполненное сваркой. В металлических конструкциях встречаются следующие основные типы сварных соединений:

  • стыковые;
  • нахлесточные;
  • тавровые;
  • угловые;
  • торцовые.

Стыковое соединение - это сварное соединение двух элементов, примыкающих друг к другу торцовыми поверхностями.

Нахлесточное - сварное соединение, в котором сваренные элементы расположены параллельно и частично перекрывают друг друга.

Тавровое - сварное соединение, в котором торец одного элемента примыкает под углом и приварен к боковой поверхности другого элемента.

Угловое - сварное соединение двух элементов, расположенных под углом и сваренных в месте примыкания их краев.

Торцовое - сварное соединение, в котором боковые поверхности сваренных элементов примыкают друг к другу.

Классификация и обозначение сварных швов. Сварной шов - это участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла или в результате пластической деформации при сварке давлением или сочетания кристаллизации и деформации. Сварные швы могут быть стыковыми и угловыми.

Стыковой - это сварной шов стыкового соединения. Угловой - это сварной шов углового, нахлесточного или таврового соединений (ГОСТ 2601-84).

Сварные швы подразделяются также по положению в пространстве (ГОСТ 11969-79):

  • нижнее - в лодочку - Л;
  • полугоризонтальные - Пг;
  • горизонтальные - Г;
  • полувертикальные - Пв;
  • вертикальные - В;
  • полупотолочные - Пп;
  • потолочные - П.

По протяженности швы различают сплошные и прерывистые. Прерывистые швы могут быть цепными или шахматными. По отношению к направлению действующих усилий швы подразделяются на:

  • продольные;
  • поперечные;
  • комбинированные;
  • косые.

По форме наружной поверхности стыковые швы могут быть выполнены нормальными (плоскими), выпуклыми или вогнутыми. Соединения, образованные выпуклыми швами лучше работают при статических нагрузках. Однако чрезмерный наплыв приводит к лишнему расходу электродного металла и поэтому выпуклые швы неэкономичны. Плоские и вогнутые швы лучше работают при динамических и знакопеременных нагрузках, так как нет резкого перехода от основного металла к сварному шву. В противном случае создается концентрация напряжений, от которых может начаться разрушение сварного соединения.

По условиям работы сварного узла в процессе эксплуатации изделия сварные швы подразделяются на рабочие, которые непосредственно воспринимают нагрузки, и соединительные (связующие), предназначенные только для скрепления частей или деталей изделия. Связующие швы чаще называют нерабочими швами. При изготовлении ответственных изделий выпуклость на рабочих швах снимают электрическими шлифмашинками, специальными фрезами или пламенем аргонодуговой горелки (выглаживание).

Основные типы, конструктивные элементы, размеры и условия обозначения швов сварных соединений для ручной электродуговой сварки углеродистых и низколегированных сталей, регламентированы ГОСТ 5264-80.

Конструктивные элементы сварных соединений. Форму разделки кромок и их сборку под сварку характеризуют три основные конструктивные элемента: зазор, притупление кромок, и угол скоса кромки.

Тип и угол разделки кромок определяют количество необходимого электродного металла для заполнения разделки, а значит, и производительность сварки. X-образная разделка кромок, по сравнению с V-образной, позволяет уменьшить объем наплавленного металла в 1,6-1,7 раза. Кроме того, такая разделка обеспечивает меньшую величину деформаций после сварки. При X-образной и V-образной разделке, кромки притупляют для правильного формирования шва и предотвращения образования прожогов.

Зазор при сборке под сварку определяется толщиной свариваемых металлов, маркой материала, способом сварки, формой подготовки кромок и т. п. Например, минимальную величину зазора назначают при сварке без присадочного металла небольших толщин (до 2 мм) или при дуговой сварке неплавящимся электродом алюминиевых сплавов. При сварке плавящимся электродом зазор обычно составляет 0-5 мм, увеличение зазора способствует более глубокому проплавлению металла.

Шов сварного соединения характеризуется основными конструктивными элементами в соответствии с ГОСТ 2601-84: шириной; выпуклостью; глубиной проплавления (для стыкового шва) и катетом для углового шва; толщиной детали.

Основные элементы сварного шва показаны на рис. 1.

Рис. 1. : а - угловой шов; б - стыковой шов

Технологическая прочность сварного шва. Термин «Технологическая прочность» применяется для характеристики прочности конструкции в процессе ее изготовления. В сварных конструкциях технологическая прочность лимитируется в основном прочностью сварных швов. Это один из важных показателей свариваемости стали.

Технологическая прочность оценивается образованием горячих и холодных трещин.

Горячие трещины - это хрупкие межкристаллические разрушения металла шва и зоны термического влияния. Возникают в твердо-жидком состоянии на завершающей стадии первичной кристаллизации, а так же в твердом состоянии при высоких температурах на этапе преимущественного развития межзернистой деформации.

Наличие температурно-временного интервала хрупкости является первой причиной образования горячих трещин. Температурно-временной интервал обуславливается образованием жидких и полужидких прослоек, нарушающих металлическую сплошность сварного шва. Эти прослойки образуются при наличии легкоплавких, сернистых соединений (сульфидов) FeS с температурой плавления 1189 °C и NiS с температурой плавления 810 °C. В пиковый момент развития сварочных напряжений по этим жидким прослойкам происходит сдвиг металла, перерастающего в хрупкие трещины.

Вторая причина образования горячих трещин - высокотемпературные деформации. Они развиваются вследствие затрудненной усадки металла шва, формоизменения свариваемых заготовок, а так же при релаксации сварочных напряжений в неравновесных условиях сварки и при послесварочной термообработки, структурной и механической концентрации деформации.

Холодные трещины . Холодными считают такие трещины, которые образуются в процессе охлаждения после сварки при температуре 150 °C или в течении нескольких последующих суток. Они имеют блестящий кристаллический излом без следов высокотемпературного окисления.

Основные факторы, обуславливающие появление холодных трещин:

  • образование структур закалки (мартенсита и бейнита) приводит к появлению дополнительных напряжений, обусловленных объемным эффектом;
  • воздействие сварочных растягивающих напряжений;
  • концентрация диффузионного водорода.

Водород легко перемещается в незакаленных структурах. В мартенсите диффузионная способность водорода снижается, он скапливается в микропустотах мартенсита, переходит в молекулярную форму и постепенно развивает высокое давление, способствующее образованию холодных трещин. Кроме того, водород, адсорбированный на поверхности металла и в микропустотах, вызывает охрупчивание металла.

Свариваемость - свойство металла и сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия. Сложность понятия о свариваемости материалов объясняется тем, что при оценке свариваемости должна учитываться взаимосвязь сварочных материалов, металлов и конструкции изделия с технологий сварки.

Показателей свариваемости много. Показателем свариваемости легированных сталей, предназначенных например, для изготовления химической аппаратуры, является возможность получить сварочное соединение, обеспечивающее специальные свойства - коррозионную стойкость, прочность при высоких или низких температурах.

При сварке разнородных металлов показателем свариваемости является возможность образования в соединении межатомных связей. Однородные металлы соединяются сваркой без затруднений, тогда как некоторые пары из разнородных металлов совершенно не образуют в соединении межатомных связей, например, не сваривается медь со свинцом, или титан с углеродистой сталью.

Важным показателем свариваемости металлов является отсутствие в сварных соединениях закаленных участков, трещин и других дефектов, отрицательно влияющих на работу сварного соединения.

Единого показателя свариваемости металлов пока нет.

Сварные швы и соединения

Неразъемное соединение, которое было выполнено с помощью сварки, называется сварным. Оно состоит из нескольких зон (рис. 77):

Сварного шва;

Сплавления;

Рис. 77. Зоны сварного соединения: 1 – сварного шва; 2 – сплавления; 3 – термического влияния; 4 – основного металла

Термического влияния;

Основного металла.

По протяженности сварные соединения бывают:

Короткими (250–300 мм);

Средними (300–1000 мм);

Длинными (более 1000 мм). В зависимости от длины сварного шва выбирают и способ его выполнения. При коротких соединениях шов ведут в одном направлении от начала к концу; для средних участков характерно наложение шва отдельными участками, причем его длина должна быть такой, чтобы для его завершения хватило целого числа электродов (два, три); длинные соединения сваривают обратноступенчатым способом, о котором говорилось выше.

По типу сварные соединения (рис. 78) подразделяются на:

1. Стыковые. Это наиболее часто встречающиеся соединения при различных способах сварки. Им отдают предпочтение, потому что они характеризуются наименьшими собственными напряжениями и деформациями. Как правило, стыковыми соединениями сваривают конструкции из листового металла.

Рис. 78. Виды сварных соединений: а – стыковые; б – тавровые; в – угловые; г – нахлесточные

Рис. 78 (окончание). д – прорезные; е – торцовые; ж – с накладками; 1–3 – основной металл; 2 – накладка: 3 – электрозаклепки; з – с электрозаклепками

Основными достоинствами данного соединения, рассчитывать на которые можно при условии тщательной подготовки и подгонки кромок (благодаря притуплению последних предотвращаются прожог и протекание металла в процессе сварки, а соблюдение их параллельности обеспечивает ка чественный равномерный шов), являются следующие:

Минимальный расход основного и наплавленного металла;

Наименьший временной промежуток, необходимый для сварки;

Выполненное соединение может по своей прочности не уступать основному металлу.

В зависимости от толщины металла кромки при дуговой сварке могут быть обрезаны под разными углами к поверхности:

Под прямым углом, если соединяют стальные листы толщиной 4–8 мм. При этом между ними оставляют зазор в 1–2 мм, что облегчает проваривание нижней частей кромок;

Под прямым углом, если соединяют металл толщиной до 3 и до 8 мм при одно– или двусторонней сварке соответственно;

С односторонним скосом кромок (V-об разно), если толщина металла составляет от 4 до 26 мм;

С двусторонним скосом (X-образно), если листы имеют толщину 12–40 мм, причем этот способ более экономичен, чем предыдущий, поскольку количество наплавленного металла уменьшается практически в 2 раза. Это означает экономию электродов и электроэнергии. Кроме того, для двустороннего скоса в меньшей степени характерны деформации и напряжения при сварке;

Угол скоса можно уменьшить с 60° довести до 45°, если сваривать листы толщиной более 20 мм, что снизит объем наплавленного металла и сэкономит электроды. Наличие зазора в 4 мм между кромками обеспечит необходимый провар металла.

При сварке металла разной толщины кромку более толстого материала скашивают сильнее. При значительной толщине соединяемых дуговой сваркой деталей или листов применяют чашеобразную подготовку кромок, причем при толщине 20–50 мм проводят одностороннюю подготовку, а при толщине более 50 мм – двустороннюю.

Сказанное выше наглядно показано в табл. 44.

2. Нахлесточные, чаще всего используемые при дуговой сварке конструкций, толщина металла которых составляет 10–12 мм. От предыдущего соединения данный вариант отличает отсутствие необходимости специальным образом подготавливать кромки – достаточно просто обрезать их. Хотя сборка и подготовка металла под нахлесточное соединение не столь обременительны, следует учесть, что расход основного и наплавленного металла увеличивается по сравнению со стыковыми соединениями. Для надежности и избегания коррозии вследствие попадания влаги между листами такие соединения проваривают с обеих сторон. Есть виды сварки, где применяют исключительно данный вариант, в частности при точечной контактной и роликовой.

3. Тавровые, широко распространенные при дуговой сварке. Для них кромки скашивают с одной или обеих сторон либо вообще обходятся без скоса. Особые требования предъявляются только к подготовке вертикального листа, который должен иметь равно обрезанную кромку. При одно– и двусторонних скосах кромки вертикального листа предусматривают зазор в 2–3 мм между вертикальной и горизонтальной плоскостями, чтобы проварить вертикальный лист на всю толщину. Односторонний скос выполняют в том случае, когда конструкция изделия такова, что невозможно проварить ее с обеих сторон.

Таблица 44

Выбор стыкового соединения в зависимости от толщины металла

5. Прорезные, к которым прибегают в тех случаях, когда нахлесточный шов нормальной длины не дает необходимой прочности. Такие соединения бывают двух типов – открытые и закрытые. Прорезь проделывают с помощью кислородной резки.

6. Торцовые (боковые), при которых листы накладывают один на другой и сваривают по торцам.

7. С накладками. Для выполнения такого соединения листы состыковывают и перекрывают стык накладкой, что, естественно, влечет за собой дополнительный расход металла. Поэтому данный способ используют в том случае, когда выполнить стыковой или нахлесточный шов не представляется возможным.

8. С электрозаклепками. Данное соединение является прочным, но недостаточно плотным. Для него верхний лист просверливают и заваривают полученное отверстие таким образом, чтобы захватить и нижний лист.

Если металл не слишком толстый, то просверливания и не требуется. Например, при автоматической сварке под флюсом верхний лист просто проплавляется сварочной дугой.

Конструктивный элемент сварного соединения, который при его выполнении образуется вследствие кристаллизации расплавленного металла по линии перемещения источника нагрева, называется сварным швом. Элементами его геометрической формы (рис. 79) являются:

Ширина (b);

Высота (h);

Величина катета (K) для угловых, нахлесточных и тавровых соединений.

Классификация сварных швов основывается на различных признаках, которые представлены ниже.

Рис. 79. Элементы геометрической формы сварного шва (ширина, высота, величина катета)

1. По типу соединения:

Стыковые;

Угловые (рис. 80).

Рис. 80. Угловой шов

Угловые швы практикуют при некоторых видах сварных соединений, в частности при нахлесточных, стыковых, угловых и с накладками.

Стороны такого шва называются катетами (k), зона ABCD на рис. 80 показывает степень выпуклости шва и не принимается во внимание при расчете прочности сварного соединения. При его выполнении необходимо, чтобы катеты были равны, а угол между сторонами OD и BD составлял 45°.

2. По виду сварки:

Швы дуговой сварки;

Швы автоматической и полуавтоматической сварки под флюсом;

Швы дуговой сварки в среде защитных газов;

Швы электрошлаковой сварки;

Швы контактной сварки;

Швы газовой сварки.

3. По пространственному положению (рис. 81), в котором выполняется сварка:

Рис. 81. Сварные швы в зависимости от их пространственного положения: а – нижний; б – горизонтальный; в – вертикальный; г – потолочный

Горизонтальные;

Вертикальные;

Потолочные.

Проще всего выполняется нижний шов, труднее всего – потолочный.

В последнем случае сварщики проходят специальное обучение, причем потолочный шов легче сделать газовой сваркой, чем дуговой.

4. По протяженности:

Непрерывные;

Прерывистые (рис. 82).

Рис. 82. Прерывистый сварной шов

Прерывистые швы практикуют достаточно широко, особенно в тех случаях, когда нет необходимости (расчет на прочность не предполагает выполнения сплошного шва) плотно соединять изделия.

Длина (l) соединяемых участков составляет 50–150 мм, промежуток между ними приблизительно в 1,5–2,5 раза превосходит зону сваривания, а вместе они образуют шаг шва (t).

5. По степени выпуклости, т. е. форме наружной поверхности (рис. 83):

Нормальные;

Выпуклые;

Вогнутые.

Тип используемого электрода определяет выпуклость шва (a‘). Наибольшая выпуклость характерна для тонкопокрытых электродов, а толстопокрытые электроды дают нормальные швы, поскольку отличаются большей жидкотекучестью расплавленного металла.

Рис. 83. Сварные швы, различающиеся по форме наружной поверхности: а – нормальные; б – выпуклые в – вогнутые

Опытным путем было установлено, что прочность шва не возрастает с увеличением его выпуклости, тем более если соединение «работает» при переменных нагрузках и вибрации. Подобное положение объясняется так: при выполнении шва с большой выпуклостью невозможно добиться плавного перехода от валика шва к основному металлу, поэтому в этой точке кромка шва как бы подрезается, и здесь в основном концентрируются напряжения.

В условиях переменных и вибрационных нагрузок в этом месте сварное соединение может подвергаться разрушению. Кроме того, выпуклые швы требуют повышенного расхода электродного металла, энергии и времени, т. е. является неэкономичным вариантом.

6. По конфигурации (рис. 84):

Прямолинейные;

Кольцевые;

Рис. 84. Сварные швы различной конфигурации: а – прямолинейный; б – кольцевой

Вертикальные;

Горизонтальные.

7. По отношению к действующим силам (рис. 85):

Фланговые;

Торцовые;

Комбинированные;

Косые. Вектор действия внешних сил может быть параллельным оси шва (характерно для фланговых), перпендикулярным оси шва (при торцовых), проходить под углом к оси (для косых) или сочетать направление фланговых и торцовых сил (при комбинированных).

8. По способу удержания расплавленного металла шва:

Без подкладок и подушек;

На съемных и остающихся стальных подкладках;

Рис. 85. Сварные швы по отношению к действующим силам: а – фланговый; б – торцовый; в – комбинированный; г – косой

На медных, флюсо-медных, керамических и асбестовых подкладках, флюсовых и газовых подушках.

При наложении первого слоя шва главное – суметь удержать жидкий металл в сварочной ванне.

Чтобы предотвратить его вытекание, используют:

Стальные, медные, асбестовые и керамические подкладки, которые подводятся под корневой шов. Благодаря им можно увеличить сварочный ток, что обеспечивает сквозное проплавление кромок и гарантирует стопроцентный провар деталей. Кроме того, подкладки удерживают расплавленный металл в сварочной ванне, препятствуя образованию прожогов;

Вставки между свариваемыми кромками, которые выполняют те же функции, что и прокладки;

Подрубку и подварку корня шва с противоположной стороны, при этом не стремятся к сквозному проплавлению;

Флюсовые, флюсо-медные (при сварке под флюсом) и газовые (при ручной дуговой, автоматической и аргонно-дуговой сварке) подушки, которые подводят или подают под первый слой шва. Их цель – не допустить вытекания металла из сварочной ванны;

Соединения в замок при выполнении стыковых швов, которые предупреждают прожоги в корневом слое шва;

Специальные электроды, покрытие которых содержит особые компоненты, увеличивающие силу поверхностного натяжения металла и не позволяющие ему вытекать из сварочной ванны при выполнении вертикальных швов сверху вниз;

Импульсную дугу, благодаря которой происходит кратковременное расплавление металла, что способствует более быстрому охлаждению и кристаллизации металла шва.

9. По стороне, на которой накладывается шов (рис. 86):

Односторонние;

Двусторонние.

10. По свариваемым материалам:

На углеродистых и легированных сталях;

Рис. 86. Сварные швы, различающиеся своим расположением: а – односторонний; б – двусторонний

На цветных металлах;

На биметалле;

На пенопласте и полиэтилене.

11. По расположению соединяемых деталей:

Под острым или тупым углом;

Под прямым углом;

В одной плоскости.

12. По объему наплавленного металла (рис. 87):

Нормальные;

Ослабленные;

Усиленные.

13. По расположению на изделии:

Продольные;

Поперечные.

14. По форме свариваемых конструкций:

На плоских поверхностях;

На сферических поверхностях.

15. По количеству наплавленных валиков (рис. 88):

Однослойные;

Многослойные;

Многопроходные.

Перед осуществлением сварочных работ кромки соединяемых изделий, конструкций или частей должны быть соответствующим образом подготовлены, поскольку от их геометрической формы зависит прочность шва

Рис. 87. Сварные швы, различающиеся по объему наплавленного металла: а – ослабленный; б – нормальный; в – усиленный

Рис. 88. Сварные швы, различающиеся количеством наплавленных валиков: а – однослойный; б – многослойный; в – многослойный многопроходный

Элементами подготовки формы являются (рис. 89):

Угол разделки кромки (?), который должен быть выполнен, если толщина металла составляет более 3 мм. Если пропустить эту операцию, то возможны такие негативные последствия, как непровар по сечению сварного соединения, перегрев и пережог металла. Разделка кромок дает возможность осуществлять сварку несколькими слоями небольшого сечения, благодаря чему структура сварного соединения улучшается, а внутренние напряжения и деформации снижаются;

Рис. 89. Элементы подготовки кромо

Зазор между соединяемыми кромками (a). От правильности установленного зазора и подобранного режима сварки зависит, насколько полным будет провар по сечению соединения при формировании первого (корневого) слоя шва;

Притупление кромок (S), необходимое для того, чтобы придать процессу наложения корневого шва определенную устойчивость. Игнорирование этого требования приводит к пережогу металла при сварке;

Длина скоса листа в том случае, если имеется разница по толщине (L). Этот элемент позволяет обеспечивать плавный и постепенный переход от более толстой детали к тонкой, что снижает или устраняет риск концентрации напряжений в сварных конструкциях;

Смещение кромок по отношению друг к другу (?). Поскольку это снижает прочностные характеристики соединения, а также способствует непровару металла и образованию очагов напряжений, ГОСТом 5264–80 установлены допустимые нормы, в частности смещение должно составлять не более 10 % толщины металла (максимум 3 мм).

Таким образом, при подготовке к сварке необходимо выполнить следующие требования:

Очистить кромки от загрязнений и коррозии;

Снять фаски соответствующего размера (по ГОСТу);

Установить зазор в соответствии с ГОСТом, разработанным для того или иного типа соединения.

О некоторых видах кромок уже говорилось ранее (хотя они и рассматривались в другом аспекте) при описании стыковых соединений, но тем не менее необходимо еще раз заострить на этом внимание (рис. 90).

Выбор того или иного вида кромок определяется рядом факторов:

Способом сварки;

Толщиной металла;

Способом соединения изделий, частей и проч.

Для каждого способа сварки разработан отдельный стандарт, в котором указаны форма подготовки кромок, размер шва и допустимые отклонения. Например, ручная дуговая сварка осуществляется по ГОСТу 5264–80, контактная – по ГОСТу 15878–79, электрошлаковая – по ГОСТу 15164–68 и т. д.

Рис. 90. Виды кромок, подготовленных к сварке: а – со скосом обеих кромок; б – со скосом одной кромки; в – с двумя симметричными скосами одной кромки; г – с двумя симметричными скосами двух кромок; д – с криволинейным скосом двух кромок; е – с двумя симметричными криволинейными скосами двух кромок; ж – со скосом одной кромки; з – с двумя симметричными скосами одной кромки

Кроме того, имеется стандарт на графическое обозначение сварного шва, в частности ГОСТ 2.312–72. Для этого используется наклонная линия с односторонней стрелкой (рис. 91), которая указывает участок шва.

Характеристика шва, рекомендованный способ сварки и иная информация представлены над или под горизонтальной полкой, соединенной с наклонной линией-стрелкой. Если шов видимый, т. е. находится на лицевой стороне, то характеристика шва дается над полкой, если невидимый – под ней.

Рис. 91. Графическое обозначение сварных швов

К условным обозначениям сварного шва относятся и дополнительные знаки (рис. 92).

Для различных видов сварки приняты буквенные обозначения:

Дуговая сварка – Э, но поскольку этот вид наиболее распространенный, то в чертежах буква может и не указываться;

Газовая сварка – Г;

Электрошлаковая сварка – Ш;

Сварка в среде инертных газов – И;

Сварка взрывом – Вз;

Плазменная сварка – Пл;

Контактная сварка – Кт;

Сварка в углекислом газе – У;

Сварка трением – Тр;

Холодная сварка – Х.

При необходимости (если реализуется несколько способов сварки) перед обозначением той или иной разновидности располагают буквенное обозначение используемого способа сварки:

Рис. 92. Дополнительные обозначения сварного шва: а – прерывистый шов с цепной последовательностью участков; б – прерывистый шов с шахматной последовательностью участков; в – шов по замкнутому контуру; г – шов по незамкнутому контуру; д – монтажный шов; е – шов со снятым усилением; ж – шов с плавным переходом к основному металлу

Ручная – Р;

Полуавтоматическая – П;

Автоматическая – А.

Дуговая под флюсом – Ф;

Сварка в активном газе плавящимся электродом – УП;

Сварка в инертном газе плавящимся электродом – ИП;

Сварка в инертном газе неплавящимся электродом – ИН.

Для сварных соединений также имеются специальные буквенные обозначения:

Стыковое – С;

Тавровое – Т;

Нахлесточное – Н;

Угловое – У. По цифрам, проставленным после букв, определяют номер сварного соединения по ГОСТу на сварку.

Обобщая сказанное выше, можно констатировать, что условные обозначения сварных шов складываются в определенную структуру (рис. 93).

Сварочный шов — линия расплавленного металла на кромках двух стыкующихся конструкций, возникающая в результате воздействия на сталь электрической дуги. Тип и конфигурация швов подбирается для каждого случая индивидуально, ее выбор зависит от таких факторов как мощность используемого оборудования, толщина и химический состав свариваемых сплавов. Такой шов также возникает при сварке полипропиленовых труб паяльником.

В данной статье рассмотрены виды сварочных швов и технология их выполнения. Мы изучим вертикальные, горизонтальные и потолочные швы, а также узнаем, как выполняется их зачистка и проверках на предмет дефектов.

1 Классификация сварочных швов

Классификация швов на разновидности выполняется по многим факторам, основным из которых является тип соединения. По данному параметру швы делятся на:

  • шов встык;
  • шов внахлест;
  • тавровый шов.

Рассмотрим каждый из представленных вариантов подробнее.

1.1 Стыковое соединение

Данный способ соединения применяется при сварке торцевых частей труб, квадратного профиля и листового металла. Соединяющиеся детали размещаются так, чтобы между их кромками оставался зазор в 1.5-2 мм (желательна фиксация деталей струбцинами). При работе с листовым металлом, толщина которого не превышает 4 мм, шов прокладывается только с одной стороны, в листах 4-12 мм он может быть как двойным, таки одинарным, при толщине от 12 мм — только двойным.

Если толщина стенок деталей составляет 4-12 мм, необходима механическая зачистка краев и заделка кромок одним из нижеуказанных способов. Соединение особо толстого металла (от 12 мм) рекомендовано выполнять с использованием Х-образной зачистки, другие варианты тут невыгодны из-за потребности в большом количестве металла для заполнения образовавшегося шва, что увеличивает расход электродов.

Однако в ряде случаев сварщиком может приниматься решение варить толстый металл одним швом, что требует его заполнения в несколько проходов. Швы такой конфигурации называются многослойными, технология сварки многослойных швов приведена на изображении.

1.2

Нахлесточное соединение применяется исключительно при сварке листового металла толщиной 4-8 мм, при этом пластина проваривается с обеих сторон, что исключает возможность попадания между листами влаги и их последующей коррозии.

Технология выполнения такого шва крайне требовательна к соблюдению правильного угла наклона электрода, который должен варьироваться в диапазоне 15-40 градусов. В случае отклонения от нормы заполняющий шов металл будет смещаться с линии стыка, что значительно снизит прочность соединения.

1.3 Тавровый шов

Тавровое соединение выполняется в форме литеры «Т», оно может выполнятся как с двух, так и с одной стороны. Количество швов и потребность в разделке торцевой части детали зависит от ее толщины:

  • до 4 мм — односторонний шов без разделки торцов;
  • 4-8 мм — двойной, без разделки;
  • 4-12 мм — одинарный с односторонней разделкой;
  • более 12 мм — двухсторонний, двойная разделка.

Одной из разновидностей таврового соединения является угловой шов, используемый для соединения двух перпендикулярных либо наклоненных друг к другу листов металла.

2 Разновидности швов по пространственному положению

Помимо классификации по типу соединения, швы делятся на разновидности в зависимости от положения в пространстве, согласно которому они бывают:

  • вертикальные;
  • горизонтальные;
  • потолочные.

Проблемой выполнения вертикальных швов является сползание расплавленного металла вниз, что происходит из-за силы тяжести. Тут необходимо применять короткую дугу — держать торец электрода максимально близко к металлу. Сварка вертикальных швов требует реализации предварительных работ — зачистки и разделки, которые подбираются исходя из типа соединения и толщины металла. После подготовки детали фиксируются в требуемом положении и производится черновое соединение поперечными «прихватами», которые препятствуют смещению заготовок.

Сварка вертикального шва может выполняться как сверху-вниз, так и снизу-вверх, в плане удобства работы последний вариант предпочтителен. Электрод необходимо удерживать перпендикулярно по отношению к соединяемым деталям, допустимо опирать его на кромки сварного кратера. Движение электрода выбирается исходя из требуемой толщины шва, наиболее прочный стык достигается при поперечном смещении электрода из стороны в сторону и при петлеобразном колебании.

На вертикальных плоскостях швы горизонтального типа выводятся слева-направо либо справа-налево. Сварка горизонтальных швов осложняется стеканием ванны вниз, что требует поддерживания значительного угла наклона электрода — от 80 до 90 0 . Чтобы не допустить наплыва металла в таких положениях необходимо перемещать электрод без поперечных колебаний, способом узких валиков.

Скорость движения электрода подбирается так, чтобы центр дуги проходил по верхней границе шва, а нижний контур расплавленной ванны не доходил до верхнего торца предыдущего валика. Особое внимание тут необходимо уделить верхней кромке, наиболее подверженной образованию различных дефектов. До начала сварки последнего валика нужно обязательно очистить сформированный шов от шлака и нагара.

Наиболее трудными в исполнении являются потолочные швы. Поскольку в таком пространственном положении расплавленная ванна удерживается исключительно поверхностным натяжением металла, сам шов необходимо делать максимально узким. Стандартная ширина валика — не более двукратной ширины используемых электродов, при этом в работе нужно применять электроды диаметром до 4 мм.

При прокладывании шва электрод необходимо удерживать под углом от 90 до 130 0 к соединяемым плоскостям. Валик формируется колебательными движениями электрода от кромки до кромки, при этом в крайнем боком положении электрод задерживается, что позволяет избежать подрезов. Отметим, что сварщикам без опыта за потолочные швы браться не рекомендуется.

2.1 Технология сварки потолочных швов (видео)

2.2 Зачистка и контроль дефектов

После формирования шва на поверхности соединенных деталей остается шлак, капли расплавленной стали и окалины, при этом сам шов может иметь выпуклую форму и выступать над плоскостью металла. Устранить данные недочеты позволяет зачистка, которая осуществляется поэтапно.

Первоначально посредством молотка и зубила нужно удалить окалину и шлак, далее с помощью болгарки, укомплектованной абразивным диском, либо шлифовальной машинки, выравниваются соединенные плоскости. Зернистость абразивного круга выбирается исходя из требуемой гладкости поверхность.

Дефекты сварного шва, часто встречающиеся у неопытных специалистов, как правило являются следствием неравномерного движения электрода либо неправильно выбранной силы и величины тока. Некоторые дефекты являются критичными, некоторые можно исправить — в любом случае контроль шва на предмет их наличия является обязательным.

Рассмотрим, какие дефекты бывают и как выполняется их проверка:


Также могут образовываться дефекты в виде трещин, которые появляются на стадии остывания металла. Трещины бывают двух конфигураций — направленные поперек либо вдоль шва. В зависимости от времени образования трещины классифицируются на горячие и холодные, последние появляются после отвердевания стыка из-за чрезмерных нагрузок, которые конкретный тип шва не может выдержать.

Холодные трещины являются критическим дефектом, который может привести к полному разрушению соединения. В случае их образования необходимо выполнить повторную сварку поврежденных мест, если их слишком много — шов нужно срезать и сделать заново.

Процесс современной сварки относится к высоким технологиям с классификацией и критериями качества. Поскольку главным финальным продуктом являются сварочные швы, они также хорошо описаны, классифицированы и имеют свои критерии качества и способы выполнения.

Стандарты в виде ГОСТов содержат исчерпывающие сведения и условные обозначения вариантов самого разного назначения.

Для начала определимся с понятиями «сварочный шов» и «сварочное соединение», потому что некоторые источники рассматривают их как одно и то же, другие разводят формулировки.

Самое короткое определение: – это неразъемное соединение сваркой.

Второй вариант раскрывает физику процесса сварки как таковой: сварочный шов – это участок, в котором соединены две или несколько деталей в результате кристаллизации или деформации вещества, или одного и другого вместе. Так или иначе, сварочные швы и соединения логичнее принимать за один и тот же процесс.

Один из самых старых и известных среди специалистов стандартов – «ГОСТ 5264 – 80 Ручная дуговая сварка. Соединения сварные». Этот ГОСТ был введен в действие еще в 1981 году, он до сих пор прекрасно справляется со своими задачами: четко и ясно перечислены основные виды сварных швов, их размеры, конструктивные элементы и инструкции, как правильно класть сварочный шов. Отличный пример документа, который не нуждается в корректировках в течение долгого времени.

Виды сварочных швов

Типы сварочных соединений.

Как и методы сварки, виды сварочных швов подпадают под стройную классификацию по разным критериями:

  • Способу соединения деталей;
  • Положению во время сварки;
  • Протяженности ;
  • Расположению к силе, действующей на шов.

Самые популярные и важные виды швов объединены в группу по способу соединения деталей:

  1. Стыковые.
  2. Угловые.
  3. Тавровые.
  4. Внахлест.

Важно! Какой бы вид шва от сварки вы не выбрали, нужно помнить и соблюдать одно простое правило: никакой ржавчины на металле! Предварительная обработка напильником или наждачной бумагой обязательна, вопрос больше не обсуждается.

Швы встык

Классификация электродов для сварки.

Виды сварных соединений включают как очень популярные способы, так и редкие. Стыковые способы можно отнести к высокой популярности: они используются при сварке листового металла или торцов труб. Принципиальное требование для стыкового способа – жесткая фиксация соединяемых деталей с зазором 1 – 2 мм, который заполняется металлом по ходу процесса сварки.

Важнейший «стыковой» вопрос – края деталей, которые будут плавиться и соединяться. Вернее, способ обработки этих краев. Стыковое соединение считается одним из самых надежных и экономичных с точки зрения прочности. Особенно это касается случаев, когда варят с обеих сторон. Предварительная подготовка краев – серьезная составляющая высокого качества шва. Все 32 типа стыковых соединений с вариантами обработки краев изложены в стандарте ГОСТ 5264-80.

Вот некоторые примеры:

  1. Если лист металла тонкий – меньше 4 мм, предварительная обработка не требуется, это семейство с условными обозначениями С1, С2, С3.
  2. Если толщина листа в пределах 4 – 12 мм, шов можно варить как с одной, так и с двух сторон. Но в этом случае необходима обработка края зачисткой. Здесь все зависит от требований к качеству сварки. Если вы решили варить с одной стороны, вам придется делать несколько проходов для заполнения шва. Если требуется высокое качество – зачищать и варить нужно с двух сторон. Зачистки бывают в виде V или U. Вариантов множество, все перечислены в ГОСТе, например, условные обозначения С28, С42.
  3. Если металлический лист толще 12 мм, применяются только двойные швы с обработкой краев с обеих сторон в виде буквы Х. V или U формы зачистки кромок при большой толщине невыгодны: потребуется слишком много металла для их заполнения. А это снижает скорость процесса и повышает расход электродов. Условные обозначения С27, С39, С40.

Нет нужды излагать в данном обзоре все возможные способы сварки металлов дуговым методом в зависимости от толщины листов и способов обработки краев, лучше ГОСТа 5264-80 никто этого не сделает. Поэтому самым правильным решением будет сослаться на него и рекомендовать этот прекрасный образец технической инструкции для тщательного изучения.

Если коротко по ГОСТу, стыковое семейство делится на:

  • Односторонние и двусторонние без обработки кромок;
  • С обработкой одной из кромок;
  • С обработкой обеих кромок;
  • Распилкой в виде V или X;
  • С двусторонней обработкой обеих кромок.

Тавровые соединения

Тавровый способ в разрезе представляет собой букву «Т»: торец одной детали приварен к боковой поверхности другой детали. Чаще всего элементы расположены перпендикулярно друг к другу. В ГОСТе 5264-80 описаны 9 тавровых видов: с Т1 по Т9. Для качественного таврового соединения необходимо глубокое плавление, которое выполняется с помощью автоматической сварки. Если сварка , тщательная обработка кромок обязательна.

Интересная особенность тавровых швов глубокого плавления: они прочнее основного металла. Прочность угловых швов (о них см. ниже), напротив, меньше основного металла. Такого рода различия нужно не просто учитывать, а заранее производить расчеты. Понятие «расчет сварных соединений» входит в особый раздел технической механики, который изучается на инженерных факультетах.

Эти задачи сопромата учитывают главные особенности и недостатки сварочных соединений: неравномерную прочность, неровные процессы нагрева и охлаждения, как результат, возможное коробление, остаточное напряжение или скрытые дефекты.

Угловые соединения

Схема создания вертикального шва.

В некоторых источниках угловые швы при сварке описываются как часть тавровых. Их описать так же легко, как тавровые: угловой профиль напоминает букву «Г», а в ГОСТе 5264-80 они обозначаются с начальной буквой «У»: от У1 до У10.

При кажущейся простоте в сварке углового соединения иногда возникают трудности: металл стекает с угла или вертикальной поверхности на горизонтальную. Решение такой проблемы – контроль движения электрода, чтобы соблюдать правильные углы его наклона, и чтобы это движение было ровным. В этом случае вы получите качественный ровно заполненный шов.

Отличным способом качественной угловой варки является метод, получивший название «сварка в лодочку»: детали расположены друг к другу под прямым углом, длина швов 8 мм и больше.

Если угловых соединений включает листы металла разной толщины – тонкий и толстый – электрод должен быть расположен к более толстой детали под углом 60 градусов, чтобы больше прогрева пришлось на нее. Тогда тонкий металл не прогорит.

Сварка угловых швов предусматривает выполнение правил геометрии сварочных соединений.

Главные геометрические критерии следующие:

  • Ширина – зазор между краями сплавления металлов;
  • Изогнутость – зазор в точке максимальной вогнутости;
  • Выпуклость – зазор в точке максимальной выпуклости;
  • Корень стыка – самая далекая от профиля грань (фактическая изнанка)

Сварка углового шва будет самой оптимальной при вогнутой форме уровня. Это объясняется риском неполной проварки угловых швов корня на всю толщину. Если говорить о самом прочном варианте из всех возможных, нужно помнить о множестве разнообразных факторов.

Основные типы сварных швов.

Основные нормы электросварки на величину шва:

  • Напряжение тока дуги;
  • Темп работы;
  • Величина сечения проволоки;
  • Величина, плотность, полярность напряжения.

Например, при увеличении силы тока увеличивается глубина провара (размер не меняется). Но в то время, когда дуга усиливается, шов расширяется и, как следствие, падает глубина провара.

Если уменьшается размер сечения сварной проволоки, ток в проводе усиливается, глубина провара увеличивается, а сам шов уменьшается в размерах. Примеров оптимального сочетания факторов сварки много. Все виды сварных соединений содержат главное требование – не нарушать технологии выполнения, заранее планировать и рассчитывать величины всех вводимых параметров.

Швы внахлест

Соединения внахлест: поверхности параллельны друг другу, частично перекрывают друг друга, сварены угловым способом. Это самые простые для исполнения швы – отличный старт для обучения новичков.

Соединение внахлест – схема.

Все типы сварных швов внахлест имеют строгое ограничение по толщине листового металла – он должен быть не больше 8 мм. Здесь важно найти правильный угол наклона электрода – диапазон от 15 до 45 градусов. В ГОСТе соединения внахлест условно обозначены как H1 и H2.

При работе с двумя заготовками часто используется односторонняя точеная сварка, у которой отмечается серьезный недостаток: между деталями формируются зазоры. Влага, коррозия становятся главными врагами при таком способе. Результат такого рода дефектов описывается одним словом – недолговечность.

Тем не менее, соединения внахлест имеют очень широкое применение, вот несколько таких примеров:

  • Установка легких конструкций типа павильонов или ларьков;
  • Установка рекламных щитов и других конструкций;
  • Сборка тентов, навесов.

Сравниваем, оцениваем

Из вышеперечисленных вариантов самыми надежным и экономичным считается стыковой способ сварки. По действующим нагрузкам они практически равны целым элементам, которые не подвергались сварке, иными словами – основному материалу. Естественно, такая прочность достигается только при адекватном качестве работ.

Вместе с тем нужно помнить, что надежность и экономичность способа не означает простоту его исполнения. Требования к обработке краев, подгонка множества факторов под условия конкретной сварки, определенные ограничения в применении из-за формы – все это требует жесткой профессиональной дисциплины.

Сварка стыковых швов.

Тавровые соединения (включая угловые) тоже довольно популярны. Особенно часто их используют при сварке массивных конструкций.

Самые простые для исполнения – соединения внахлест. В них не требуется обработка , общая подготовка тоже намного проще. Очень популярны в сварке листов небольшой толщины (допускается толщина до 60 мм). Простота не означает экономичности: перерасход наплавленного и основного металлов – обычная для таких вариантов ситуация.

Швы по положению в пространстве

Следующий критерий классификации – положение поверхностей в пространстве. Таких положений четыре:

  1. Нижние швы
  2. Горизонтальные
  3. Вертикальные
  4. Потолочные

Если бы можно было выбирать, опытные мастера выбрали бы сварку в нижнем положении. Это самый удобный способ, к тому же лучше контролируется сварочная ванна. Подходящий способ для дебютных работ новичков – здесь практически не встречаются сложности. Зато три остальных пространственных варианта сопряжены с техническими нюансами и специальными требованиями к исполнению.

В сварке в горизонтальном положении главной проблемой выступает сила тяжести – из-за нее металл попросту сползает вниз. Такие соединения можно варить как справа налево, так и слева направо, кому как удобно. Но правило использования электрода одно на всех: угол его наклона должен быть достаточно большим. Конечно, при подборе угла нужно учитывать параметры тока и скорость движения, все взаимосвязано.

Подбирайте, пробуйте, главное – чтобы ванна не стремилась вниз. Если металл все-таки стекает, нужно уменьшить его прогрев – это можно сделать, увеличив скорость движения. Второй вариант – отрывать периодически дугу, чтобы металл хоть чуть-чуть остывал. Метод с отрывом дуги больше подходит новичкам

Классификация швов по положению в пространстве.

В вертикальных соединениях та же проблема – сила тяжести, но здесь вниз стремится не вся ванна, а капли металла. Обычно в таких случаях берут дугу покороче. Шов варить можно в любом направлении. В Регламенте аттестации сварщиков РД 03-495-02 эти варианты обозначаются как «положение при сварке В1» – вертикальное снизу-вверх (этот способ удобнее). «Положение при сварке В2» – вертикальное сверху вниз, его используют реже, так как здесь необходим жесткий контроль сварной ванны.

Потолочное соединение – самое сложное в подгруппе, для которого понадобится настоящее мастерство. В положении электрода нет никаких других вариантов – держать только под прямым углом к потолку. Дугу взять покороче, скорость круговых движения должна быть постоянной. Выделение газов и шлаков в данном случае затруднено, расплав трудно удержать от стекания. Даже если мастерство на должном уровне, и все технологические требования выполнены верно, потолочный способ уступает по прочности и общему качеству сварочным швам во всех других положениях.

Сварные соединения по очертанию

Как классифицируются сварные швы по очертанию:

  • Продольные: требуют самой тщательной подготовки металла в виде доскональной зачистки от заусениц, кромок и любых неровностей, помимо всего необходимо обезжиривание поверхностей участка сварки.
  • Кольцевые: это работы по окружностям со своими специальными требованиями – чрезвычайно высокими аккуратностью и точностью.

Варим трубопроводы, особые требования

К работе с промышленными трубопроводами допускают лишь опытных сертифицированных мастеров с высокой квалификацией. Трубные соединения относятся к вертикальному способу со всеми «вертикальными» нюансами. Особенность заключается в угле, под которым держится электрод, это угол в 45 градусов.

Ширина трубного шва может достигать 4 см, это зависит от толщины самой трубы. Для этого вида сварки предусмотрены отдельные стандарты, например, в ГОСТе 16037-80 описаны размеры швов для различных соединений конструкций трубопроводов.

Зачистка сварных швов

По своему виду вновь сваренные швы иногда напоминают келоидные рубцы на коже человека: они выпуклые и выступают над поверхностью. Шлак, окалина, капли металла часто остаются на поверхности. Убрать все это можно и нужно, процесс называется зачисткой швов.

Его этапы:

  • Сбить окалину молотком или зубилом;
  • Выровнять участок болгаркой;
  • Иногда нужно нанести тонкий слой расплавленного олова (лужение).

Брак и швейные дефекты

Самый частый дефект в работе новичка – кривой шов с неровным заполнением. Такая картина – результат неравномерного ведения электрода, он буквально пляшет в руках юного мастера. Здесь вам понадобятся упорство и труд: с опытом все это проходит без следа. Вторая по частоте ошибка – неверный выбор силы тока или длины дуги, после чего остаются «подрезы» или неровное заполнение. При одних дефектах больше страдает эстетика, при других – прочность.

Непровар – недостаточное заполнение металлом стыка деталей. Его нужно исправлять, так как речь идет о прочности соединения.

В каких случаях появляется непровар:

  • Некачественная обработка (или отсутствие таковой) кромок поверхностей;
  • Слишком слабая сила тока;
  • Слишком быстрое движение электрода.

Подрез – ненужная канавка вдоль шва. Диагноз простой, это выбор слишком длинной дуги. Лечение тоже понятное: либо дугу покороче, либо силу тока побольше.

Примеры схем движения электрода.

Прожог – банальная дырка в шве по следующим причинам:

  • Широкий зазор между краями;
  • Слишком большая сила тока;
  • Низкая скорость движения электрода

И здесь ищем оптимальное соотношение трех составляющих: тока, ширины зазора, движения электрода.

Поры и наплывы – множественные отверстия малого размера. Это критический , влияющий на прочность соединения.

  • Грязь и ржавчина на металле;
  • Попадание кислорода к расплавленному металлу (при сквозняке);
  • Некачественная обработка кромок;
  • Электроды низкого качества;
  • Использование присадочных проволок;

Трещины – серьезные нарушения целостности швов. Появляются после остывания металла и по своей сути являются предвестниками разрушения самого шва. В данном случае спасет только новая сварка или полное удаление старого шва и повторное накладывание нового.

Можно ли новичку самостоятельно научиться накладывать качественные швы? Да, без сомнений. В некоторых источниках присутствует слово «с легкостью». Легкости лучше не обещать, потому что сварка никогда не была легким и безопасным процессом. Но определить последовательные и выполнимые шаги вполне возможно самостоятельно. Принцип – от простого к сложному. Безусловно, все основные типы сварочных соединений имеют свои секреты и тонкости, которые нужно освоить.

Для дебютантов лучше всего подойдет электрическая дуговая сварка. Самый оптимальный вариант – начинать учиться под присмотром опытного наставника. Но если такой возможности нет, в сети огромное количество видеороликов с показом всех действий и подробнейшими разъяснениями к ним.

Однопроходные и многопроходные швы.

Главный начальный этап – это грамотная подготовка нужного оборудования.

Вот что нужно подготовить для электрической дуговой сварки:

  1. Сварное оборудование (разные типы);
  2. с правильно подобранным диаметром (чрезвычайно важно!)
  3. Молоток для зачистки остывшего шва;
  4. Металлическая щетка для той же зачистки сварного участка
  5. Маска, специальный световой фильтр.

Требования к одежде простые: она должна быть плотной, с длинными рукавами и перчатками. Пригодятся выпрямитель с трансформатором (особенно если оборудование старое).

Итог

Основные типы сварных соединений уложены в рамки точной и ясной классификации с условными обозначениями и детальным описанием технологических особенностей и советов. Один из самых популярных стандартов – ГОСТ 5264-80 с описанием практически всех видов сварочных швов.

Научиться сварке можно самостоятельно по принципу «от простого к сложному». «Простым» началом для исполнения можно взять швы внахлест. Закончить можно работой высшего пилотажа – сваркой при потолочном расположении поверхностей. Желаем чистого металла, хороших заказов и рабочего настроения.

Статьи по теме: