Имеется 2 сплава первый. Подготовка к ЕГЭ. Задачи на сплавы. материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

Задачи на сплавы.

1.1. Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

2. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

3. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 13% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

4. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

5. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

6. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

7. Первый сплав содержит 5% меди, второй - 11% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

8. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 6 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

9. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

2.1. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

2. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

3. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

4. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

5. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

6. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

7. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 20% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

8. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

9. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 25% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Задачи на сплавы.

Проценты переводим в десятичную дробь.

Количество вещества = масса сплава на десят. дробь.

1.1.Имеется два сплава. Первый сплав содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение.

Масса сплава % содержание Кол-во никеля

1-ый сплав х 10%=0,1 0,1х

2-ой сплав 200-х 30%=0,3 0,3(200-х)=60-0,3х

3-ий сплав 200 25% =0,25 0,25 200=50

Складываем количество никеля 1 и 2 сплавов и приравниваем к количеству 3 сплава.

Уравнение:

0,1x+60-0,3x=50

0,2x=10

X=50 - масса 1-го сплава

Тогда 200-50=150 – масса 2-го сплава

Разница 150-50=100

ОТВЕТ: 100

2.1.Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение.

Масса сплава % содержание Кол-во меди

1-ый сплав x 10%=0,1 0,1x

2-ой сплав x+3 40%=0,4 0,4(x+3)

3-ий сплав 2x+3 30%=0,3 0,3(2x+3)

Уравнение:

0,1x+0,4(x+3)=0,3(2x+3)

0,1x=0,3

Масса 3-го сплава равна 2 3+3=9

Имеется два сплава. Первый содержит 15% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Пусть масса первого сплава а масса второго - Тогда массовое содержание никеля в первом и втором сплавах и соответственно. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 70 килограммов.

Ответ : 70.

Ответ: 70

Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Ва­ри­ант 4

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 90 килограммов.

Ответ : 90.

Ответ: 90

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. Получаем систему уравнений:

Ответ : 45.

Ответ: 45

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Пусть масса первого сплава кг, а масса второго — кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. Получаем уравнение:

Следовательно, масса второго сплава 150 кг. Разность масс — 50 кг.

Ответ : 50.

Ответ: 50

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два раствора. Первый содержит 10% соли, второй - 30% соли. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. На сколько килограммов масса первого раствора была меньше массы второго?

Решение.

Пусть масса первого раствора кг, а масса второго – кг. Тогда массовое содержание соли в первом и втором растворах и , соответственно. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. Получаем систему уравнений:

Таким образом, масса первого раствора меньше массы второго на 100 килограммов.

Ответ : 100.

Ответ: 100

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Основная волна. Запад. Ва­ри­ант 1., ЕГЭ 28.04.2014 по ма­те­ма­ти­ке. Досрочный экзамен. Вариант 1.

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два сплава. Первый содержит 10% никеля, второй – 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 135 килограммов.

Ответ : 135.

Ответ: 135

Источник: ЕГЭ по ма­те­ма­ти­ке 05.06.2014. Ос­нов­ная волна. Восток. Ва­ри­ант 1.

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два сплава. Первый сплав содержит 5% меди, второй - 12% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение.

Ответ: 7

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два сплава. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение.

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание меди в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав кг, содержащий 10% меди. Получаем систему уравнений:

Тогда масса третьего сплава равна: кг

Ответ: 63.

Ответ: 63

Классификатор базовой части: Задачи на проценты, сплавы и смеси

Имеется два сплава. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Решение.

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание меди в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав кг, содержащий 10% меди. Получаем систему уравнений:

Тогда масса третьего сплава равна: кг

Ответ: 45.

Ответ: 45

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

прототипа.


Ответ : 100.

Ответ: 120

Имеется два сплава. Первый содержит 5% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 75

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 105

Имеется два сплава. Первый содержит 5% никеля, второй — 20% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: .

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ:

Имеется два сплава. Первый содержит 5% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 5

Имеется два сплава. Первый содержит 10% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 125

Имеется два сплава. Первый содержит 5% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 0

Имеется два сплава. Первый содержит 10% никеля, второй — 40% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 0

Имеется два сплава. Первый содержит 5% никеля, второй — 40% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 35% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 125

Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Решение.

Это задание ещё не решено, приводим решение прототипа.


Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:

Таким образом, первый сплав легче второго на 100 килограммов.

Ответ : 100.

Ответ: 00000

Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

Прототип Задания B14 (№99576 )

Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава . Ответ дайте в килограммах.

Решение

Пусть x (кг) - масса первого сплава, тогда (x+3) (кг) - масса второго сплава.

Так как первый сплав содержит 10% меди, то в нем 0,1x (кг) меди. Во втором сплаве - 0,4(x+3) (кг) меди.

Масса полученного сплава равна x+x+3 = 2x+3 (кг).

Так как из этих двух сплавов получили третий сплав, содержащий 30% меди, то составим и решим уравнение:

0,1x+0,4(x+3) = 0,3(2x+3),

0,1x+0,4x+1,2 = 0,6x+0,9,

0,6x-0,5x = 1,2-0,9,

Тогда масса третьего сплава равна 2*3+3 = 6+3 = 9.

Прототип Задания B14 (№99575 )

Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Решение

x+y = 200. (уравнение 1)

В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 30% никеля, т.е. 0,3y (кг) никеля. Третий сплав содержит 25% никеля, т.е. 0,25*200 = 50 (кг) никеля. Получаем уравнение:

x+3y = 500. (уравнение 2)

x+3y - (x+y) = 500 - 200,

x = 200 - 150 = 50.

Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого сплава меньше массы второго сплава на 100 кг.

Ответ: 100.

Задание B14 (ЕГЭ 2014 )

Имеется два раствора. Первый содержит 10% соли, второй – 30% соли. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. На сколько килограммов масса первого раствора меньше массы второго?

Решение

Пусть x (кг) - масса первого раствора, y (кг) - масса второго раствора. Тогда масса третьего раствора равна

x+y = 200. (уравнение 1)

В первом растворе содержится 10 % соли, т.е. 0,1x (кг) соли, а во втором растворе - 30% соли, т.е. 0,3y (кг) соли. Третий раствор содержит 25% соли, т.е. 0,25*200 = 50 (кг) соли. Получаем уравнение:

Умножим последнее уравнение на 10, получим:

x+3y = 500. (уравнение 2)

Вычтем из уравнения 2 уравнение 1:

x+3y - (x+y) = 500 - 200,

x = 200 - 150 = 50.

Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого раствора меньше массы второго раствора на 100 кг.

Ответ: 100.

Задание B14 (ЕГЭ 2014 )

Имеется два сплава. Первый содержит 10% никеля, второй 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго сплава?

Решение

Пусть x (кг) - масса первого сплава, y (кг) - масса второго сплава. Тогда масса третьего сплава равна

x+y = 225. (уравнение 1)

В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 35% никеля, т.е. 0,35y (кг) никеля. Третий сплав содержит 30% никеля, т.е. 0,3*225 = 67,5 (кг) никеля. Получаем уравнение:

0,1x+0,35y = 67,5.

Умножим последнее уравнение на 10, получим:

x+3,5y = 675. (уравнение 2)

Вычтем из уравнения 2 уравнение 1:

x+3,5y - (x+y) = 675 - 225,

x = 225 - 180 = 45.

Тогда y-x = 180 - 45 = 135 (кг), т.е. масса первого сплава меньше массы второго сплава на 135 кг.

Ответ: 135.

Задание B14 (ЕГЭ 2014 )

Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 25 км. Путь из А в В занял у туриста 6 часов, из которых 1 час ушёл на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 1 км/ч. Ответ дайте в км/ч.

Решение

Пусть x (км/ч) - скорость туриста на спуске. Тогда скорость туриста на подъеме равна x-1 (км/ч).

Путь на подъеме занял 6-1 = 5 часов. Составим уравнение:

x = 5 (км/ч) - скорость туриста на спуске.

Задание B14 (ЕГЭ 2014 )

Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 38 км. Путь из А в В занял у туриста 8 часов, из которых 6 часов ушло на спуск. Найдите скорость туриста на спуске , если она больше скорости на подъёме на 5 км/ч. Ответ дайте в км/ч.

Решение

Пусть x (км/ч) - скорость туриста на спуске. Тогда скорость туриста на подъеме равна x-5 (км/ч).

Путь на подъеме занял 8-6 = 2 часа. Составим уравнение:

x = 6 (км/ч) - скорость туриста на спуске.

Прототип задания B14 (№ 99574 )

Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 20 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Статьи по теме: