Имеется 2 сплава первый. Подготовка к ЕГЭ. Задачи на сплавы. материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему
Задачи на сплавы.
1.1. Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
2. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
3. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 13% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
4. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
5. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
6. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
7. Первый сплав содержит 5% меди, второй - 11% меди. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
8. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 6 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
9. Первый сплав содержит 5% меди, второй - 13% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
2.1. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
2. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?
3. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
4. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?
5. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
6. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?
7. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 20% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
9. Имеется два сплава. Первый сплав содержит 5% никеля, второй - 25% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Задачи на сплавы.
Проценты переводим в десятичную дробь.
Количество вещества = масса сплава на десят. дробь.
1.1.Имеется два сплава. Первый сплав содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение.
Масса сплава % содержание Кол-во никеля
1-ый сплав х 10%=0,1 0,1х
2-ой сплав 200-х 30%=0,3 0,3(200-х)=60-0,3х
3-ий сплав 200 25% =0,25 0,25 200=50
Складываем количество никеля 1 и 2 сплавов и приравниваем к количеству 3 сплава.
Уравнение:
0,1x+60-0,3x=50
0,2x=10
X=50 - масса 1-го сплава
Тогда 200-50=150 – масса 2-го сплава
Разница 150-50=100
ОТВЕТ: 100
2.1.Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Решение.
Масса сплава % содержание Кол-во меди
1-ый сплав x 10%=0,1 0,1x
2-ой сплав x+3 40%=0,4 0,4(x+3)
3-ий сплав 2x+3 30%=0,3 0,3(2x+3)
Уравнение:
0,1x+0,4(x+3)=0,3(2x+3)
0,1x=0,3
Масса 3-го сплава равна 2 3+3=9
Имеется два сплава. Первый содержит 15% никеля, второй - 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Пусть масса первого сплава а масса второго - Тогда массовое содержание никеля в первом и втором сплавах и соответственно. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 70 килограммов.
Ответ : 70.
Ответ: 70
Источник: Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 4
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 30% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 90 килограммов.
Ответ : 90.
Ответ: 90
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. Получаем систему уравнений:
Ответ : 45.
Ответ: 45
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Пусть масса первого сплава кг, а масса второго — кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. Получаем уравнение:
Следовательно, масса второго сплава 150 кг. Разность масс — 50 кг.
Ответ : 50.
Ответ: 50
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два раствора. Первый содержит 10% соли, второй - 30% соли. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. На сколько килограммов масса первого раствора была меньше массы второго?
Решение.
Пусть масса первого раствора кг, а масса второго – кг. Тогда массовое содержание соли в первом и втором растворах и , соответственно. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. Получаем систему уравнений:
Таким образом, масса первого раствора меньше массы второго на 100 килограммов.
Ответ : 100.
Ответ: 100
Источник: ЕГЭ по математике 05.06.2014. Основная волна. Запад. Вариант 1., ЕГЭ 28.04.2014 по математике. Досрочный экзамен. Вариант 1.
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два сплава. Первый содержит 10% никеля, второй – 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 135 килограммов.
Ответ : 135.
Ответ: 135
Источник: ЕГЭ по математике 05.06.2014. Основная волна. Восток. Вариант 1.
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два сплава. Первый сплав содержит 5% меди, второй - 12% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Решение.
Ответ: 7
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два сплава. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание меди в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав кг, содержащий 10% меди. Получаем систему уравнений:
Тогда масса третьего сплава равна: кг
Ответ: 63.
Ответ: 63
Классификатор базовой части: Задачи на проценты, сплавы и смеси
Имеется два сплава. Первый сплав содержит 5% меди, второй - 14% меди. Масса второго сплава больше массы первого на 5 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
Решение.
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание меди в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав кг, содержащий 10% меди. Получаем систему уравнений:
Тогда масса третьего сплава равна: кг
Ответ: 45.
Ответ: 45
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Ответ : 100.
Ответ: 120
Имеется два сплава. Первый содержит 5% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 75
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 105
Имеется два сплава. Первый содержит 5% никеля, второй — 20% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: .
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ:
Имеется два сплава. Первый содержит 5% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 5
Имеется два сплава. Первый содержит 10% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Имеется два сплава. Первый содержит 5% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 150 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 125
Имеется два сплава. Первый содержит 5% никеля, второй — 25% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 20% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 0
Имеется два сплава. Первый содержит 10% никеля, второй — 40% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 0
Имеется два сплава. Первый содержит 5% никеля, второй — 40% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 35% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 125
Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 250 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Решение.
Это задание ещё не решено, приводим решение прототипа.
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Пусть масса первого сплава кг, а масса второго – кг. Тогда массовое содержание никеля в первом и втором сплавах и , соответственно. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. Получаем систему уравнений:
Таким образом, первый сплав легче второго на 100 килограммов.
Ответ : 100.
Ответ: 00000
Имеется два сплава. Первый содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
Прототип Задания B14 (№99576 )
Первый сплав содержит 10% меди, второй - 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава . Ответ дайте в килограммах.
Решение
Пусть x (кг) - масса первого сплава, тогда (x+3) (кг) - масса второго сплава.
Так как первый сплав содержит 10% меди, то в нем 0,1x (кг) меди. Во втором сплаве - 0,4(x+3) (кг) меди.
Масса полученного сплава равна x+x+3 = 2x+3 (кг).
Так как из этих двух сплавов получили третий сплав, содержащий 30% меди, то составим и решим уравнение:
0,1x+0,4(x+3) = 0,3(2x+3),
0,1x+0,4x+1,2 = 0,6x+0,9,
0,6x-0,5x = 1,2-0,9,
Тогда масса третьего сплава равна 2*3+3 = 6+3 = 9.
Прототип Задания B14 (№99575 )
Имеется два сплава. Первый содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Решение
x+y = 200. (уравнение 1)
В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 30% никеля, т.е. 0,3y (кг) никеля. Третий сплав содержит 25% никеля, т.е. 0,25*200 = 50 (кг) никеля. Получаем уравнение:
x+3y = 500. (уравнение 2)
x+3y - (x+y) = 500 - 200,
x = 200 - 150 = 50.
Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого сплава меньше массы второго сплава на 100 кг.
Ответ: 100.
Задание B14 (ЕГЭ 2014 )
Имеется два раствора. Первый содержит 10% соли, второй – 30% соли. Из этих двух растворов получили третий раствор массой 200 кг, содержащий 25% соли. На сколько килограммов масса первого раствора меньше массы второго?
Решение
Пусть x (кг) - масса первого раствора, y (кг) - масса второго раствора. Тогда масса третьего раствора равна
x+y = 200. (уравнение 1)
В первом растворе содержится 10 % соли, т.е. 0,1x (кг) соли, а во втором растворе - 30% соли, т.е. 0,3y (кг) соли. Третий раствор содержит 25% соли, т.е. 0,25*200 = 50 (кг) соли. Получаем уравнение:
Умножим последнее уравнение на 10, получим:
x+3y = 500. (уравнение 2)
Вычтем из уравнения 2 уравнение 1:
x+3y - (x+y) = 500 - 200,
x = 200 - 150 = 50.
Тогда y-x = 150 - 50 = 100 (кг), т.е. масса первого раствора меньше массы второго раствора на 100 кг.
Ответ: 100.
Задание B14 (ЕГЭ 2014 )
Имеется два сплава. Первый содержит 10% никеля, второй 35% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго сплава?
Решение
Пусть x (кг) - масса первого сплава, y (кг) - масса второго сплава. Тогда масса третьего сплава равна
x+y = 225. (уравнение 1)
В первом сплаве содержится 10 % никеля, т.е. 0,1x (кг) никеля, а во втором сплаве - 35% никеля, т.е. 0,35y (кг) никеля. Третий сплав содержит 30% никеля, т.е. 0,3*225 = 67,5 (кг) никеля. Получаем уравнение:
0,1x+0,35y = 67,5.
Умножим последнее уравнение на 10, получим:
x+3,5y = 675. (уравнение 2)
Вычтем из уравнения 2 уравнение 1:
x+3,5y - (x+y) = 675 - 225,
x = 225 - 180 = 45.
Тогда y-x = 180 - 45 = 135 (кг), т.е. масса первого сплава меньше массы второго сплава на 135 кг.
Ответ: 135.
Задание B14 (ЕГЭ 2014 )
Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 25 км. Путь из А в В занял у туриста 6 часов, из которых 1 час ушёл на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 1 км/ч. Ответ дайте в км/ч.
Решение
Пусть x (км/ч) - скорость туриста на спуске. Тогда скорость туриста на подъеме равна x-1 (км/ч).
Путь на подъеме занял 6-1 = 5 часов. Составим уравнение:
x = 5 (км/ч) - скорость туриста на спуске.
Задание B14 (ЕГЭ 2014 )
Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 38 км. Путь из А в В занял у туриста 8 часов, из которых 6 часов ушло на спуск. Найдите скорость туриста на спуске , если она больше скорости на подъёме на 5 км/ч. Ответ дайте в км/ч.
Решение
Пусть x (км/ч) - скорость туриста на спуске. Тогда скорость туриста на подъеме равна x-5 (км/ч).
Путь на подъеме занял 8-6 = 2 часа. Составим уравнение:
x = 6 (км/ч) - скорость туриста на спуске.
Прототип задания B14 (№ 99574 )
Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 20 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?